

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2008 2. REPORT TYPE

3. DATES COVERED
 00-00-2008 to 00-00-2008

4. TITLE AND SUBTITLE
CrossTalk: The Journal of Defense Software Engineering. Volume 21,
Number 6, June 2008

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
OO-ALC/MASE,6022 Fir Ave,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

32

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 CROSSTALK The Journal of Defense Software Engineering June 2008

4

11

14

18

22

27

3

10

13

17

31

D eD e p ap a rr t m e n t st m e n t s

From the Publisher

Coming Events
Web Sites

Call for Articles

Reader Results Request

BackTalk

The Software Quality Challenge
As the software in today’s systems grow larger, it also contains more defects
that adversely affect safety, security, and reliability of the systems. This article
explains why the common test-and-fix software quality strategy is no longer
adequate, and offers some suggestions for improvement.
by Watts S. Humphrey

Measuring Defect Potentials and Defect Removal Efficiency
This article discusses two measures that have strong influences on the
outcomes of software projects: defect potentials and defect removal
efficiency, and relates the positive effects that can be achieved by increasing
the defect removal efficiency to 95 percent and beyond.
by Capers Jones

Quality Processes Yield Quality Products
Asking, “Would your company like to save $100,000 per day?” this article
lists steps than can be taken to achieve that goal and more. The author
draws on 15 years of experience in process improvement to sift through
helpful tips including: not looking for a quick fix, keeping it short, and not
reinventing the wheel.
by Thomas D. Neff

The Use and Limitations of Static-Analysis Tools to Improve
Software Quality
Advanced static-analysis tools have been found to be effective at finding
defects that jeopardize system safety and security. In this article, the author
describes how these work and outlines their limitations.
by Dr. Paul Anderson

Automated Combinatorial Test Methods – Beyond Pairwise
Testing
This article introduces new tools for automating the production of
complete test cases covering up to 6-way combinations, going beyond the
popular Pairwise testing. Pairwise (2-way) is low in cost, but is not sufficient
for assurance of mission-critical software.
by D. Richard Kuhn, Dr. Yu Lei, and Dr. Raghu Kacker

Software Quality Unpeeled
The term software quality has many interpretations and meanings. The author
helps readers understand the underlying considerations that underscore
software quality. Software quality is a lot more than standards, metrics
models, and testing, and the mystique behind this elusive area is explored.
by Dr. Jeffrey Voas

SoftwSoftwaarree QualityQuality

SoftwSoftwaarree EngineerEngineeringing TTechnolechnologogyy

Open Open FFororumum

CrossTalk
CO-SPONSORS:

DOD-CIO

OSD (AT&L)

NAVAIR

76 SMXG

309 SMXG

DHS

STAFF:
MANAGING DIRECTOR

PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

PHONE

E-MAIL

CROSSTALK ONLINE

The Honorable John Grimes

Kristen Baldwin

Jeff Schwalb

Phil Perkins

Karl Rogers

Joe Jarzombek

Brent Baxter

Kasey Thompson

Ken Davies

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555

stsc.customerservice@
hill.af.mil

www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the Department of
Defense Chief Information Office (DoD-CIO); the
Office of the Secretary of Defense (OSD) Acquisition,
Technology and Logistics (AT&L); U.S. Navy (USN);
U.S. Air Force (USAF); and the U.S. Department of
Homeland Security (DHS). DoD-CIO co-sponsor:
Assistant Secretary of Defense (Networks and
Information Integration). OSD (AT&L) co-sponsor:
Software Engineering and System Assurance. USN co-
sponsor: Naval Air Systems Command. USAF co-
sponsors: Oklahoma City-Air Logistics Center (ALC)
76 Software Maintenance Group (SMXG); and
Ogden-ALC 309 SMXG. DHS co-sponsor: National
Cyber Security Division of the Office of
Infrastructure Protection.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 30.

517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, the co-sponsors, or
the STSC.All product names referenced in this issue
are trademarks of their companies.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-0857 or e-mail <stsc.web
master@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

Cover Design by
Kent Bingham

ON THE COVER

Additional art services
provided by Janna Jensen

June 2008 www.stsc.hill.af.mil 3

From the Publisher

Joe Jarzombek, Director for Software Assurance in the National Cyber Security
Division (NCSD) of the Department of Homeland Security (DHS, CrossTalk’s

co-sponsor), has given many keynote presentations at conferences in which he advo-
cates the need for security-enhanced processes and practices. His message at the
Software Engineering Process Group Conference in March was a snapshot of the ses-
sion he facilitated on February 8, 2008, on “Security-Enhanced Quality Assurance and
Project Management: Mitigating Risks to the Enterprise” at the Defense Acquisition

University’s (DAU) Advanced Software Acquisition Management course. His opening message
set the theme for his DAU presentation and this issue of CrossTalk. Jarzombek said, “With
today’s global supply chain for information technology and software, the processes associated
with software engineering, quality assurance (QA), and project management must explicitly
address security risks posed by exploitable software. However, traditional processes do not
explicitly address software security risks that can be passed from projects to using organizations.

“Mitigating supply chain risks requires an understanding and management of suppliers’
process capabilities, products and services. Enterprise risks stemming from the supply chain are
influenced by suppliers and acquisition projects (including procurement, QA, and testing).
Software assurance processes and practices span development and acquisition.

“Derived (non-explicit) security requirements should be elicited and considered. QA and
testing can integrate security considerations in their practices to enhance value in mitigating risks
to the enterprise.”

He then asked the audience, “What legacy do you intend to leave from the programs in
which you have project responsibilities? Is it one that contributes to a more resilient system and
enterprise or one that was simply good enough to get the customer to accept without an under-
standing of the residual risk passed to the end user?”

Along those lines, this month’s issue of CrossTalk deals with software quality. In his arti-
cle The Software Quality Challenge, Watts S. Humphrey discusses how today’s more complex soft-
ware offers greater challenges in the areas of safety, security and reliability. Capers Jones talks
about two measures that have a strong influence on the outcomes of software projects in
Measuring Defect Potentials and Defect Removal Efficiency. Asking the tantalizing question, “Would
your company like to save $100,000 per day?” Thomas D. Neff offers insights into how that is
possible in Quality Processes Yield Quality Products; while Dr. Paul Anderson discusses the advan-
tages and limitations of using static-analysis tools in The Use and Limitations of Static-Analysis Tools
to Improve Software Quality. Next, D. Richard Kuhn, Dr. Yu Lei, and Dr. Raghu Kacker offer new
tools for automating the production of complete test cases covering up to 6-way combinations
in Automated Combinatorial Test Methods – Beyond Pairwise Testing, and Dr. Jeffrey Voas gives us a
look at the misunderstood term software quality in Software Quality Unpeeled.

For additional information, I want to remind everybody that DHS’ NCSD offers free
resources related to security-enhanced quality assurance, project management, and software engineering via
their software assurance and BuildSecurityIn Web sites at: <www.us-cert.gov/swa> and
<https://buildsecurityin.us-cert.gov>. More can also be learned at the World Congress for
Software Quality, a major international gathering of software quality professionals that will take
place September 15-18, 2008 in Bethesda, Maryland. For more information on the conference,
visit <www.asq.org/conferences/wcsq>.

Finally, I would like to thank Beth Starrett for the exemplary work she has done over the
past eight years as publisher of CrossTalk. During her tenure at the helm the publication
has thrived, and has broadened both its scope and depth in the field of defense software engi-
neering. With her departure, we welcome Kasey Thompson as our new publisher. Kasey has
long been associated with CrossTalk, and we look forward to a new era of cutting-edge
articles, innovative features, and ever-evolving quality information on the subjects that you,
our readers, demand.

Quality Programming Begets Software Quality

Brent D. Baxter
Managing Director

4 CROSSTALK The Journal of Defense Software Engineering June 2008

Today, many of the systems on which
our lives and livelihoods depend are

run by software. Whether we fly in air-
planes, file taxes, or wear pacemakers, our
safety and well being depend on software.
With each system enhancement, the size
and complexity of these systems increase,
as does the likelihood of serious prob-
lems. Defects in video games, reservations
systems, or accounting programs may be
inconvenient, but software defects in air-
craft, automobiles, air traffic control sys-
tems, nuclear power plants, and weapons
systems can be dangerous.

Everyone depends on transportation
networks, hospitals, medical devices, pub-
lic utilities, and the international financial
infrastructure. These systems are all run
by increasingly complex and potentially
defective software systems. Regardless of
whether these large life-critical systems are
newly developed or composed from mod-
ified legacy systems, to be safe or secure,
they must have quality levels of very few
defects per million parts.

Modern, large-scale systems typically
have enormous requirements documents,
large and complex designs, and millions of
lines of software code. Uncorrected errors
in any aspect of the design and develop-
ment process generally result in defects in
the operational systems. The defect levels
of such operational systems are typically
measured in defects per thousand lines of
code. A one million line-of-code system
with the typical quality level of one defect
per 1,000 lines would have 1,000 undis-
covered defects, while any reasonably safe
system of this scale must have only a very
few defects, certainly less than 10.

The Need for Quality
Software
Before condemning programmers for
doing sloppy work, it is appropriate to
consider the quality levels of other types
of printed media. A quick scan of most
books, magazines, and newspapers will
reveal at least one and generally more

defects per page while even poor-quality
software has much less than one defect
per listing page. This means that the qual-
ity level of even poor-quality software is
higher than that obtained for other kinds
of human written text. Programming is an
exacting business, and these professionals
are doing extraordinarily high quality
work. The only problem is that based on
historical trends, future systems will be
much larger and more complex than
today, meaning that just to maintain
today’s defect levels, we must do much
higher quality work in the future.

To appreciate the challenge of achiev-
ing 10 or fewer defects per million lines of
code, consider what the source listing for
such a program would look like. The list-
ing for a 1,000-line program would fill 40
text pages; a million-line program would
take 40,000 pages. Clearly, finding all but
10 defects in 40,000 pages of material is
humanly impossible. However, we now
have complex life-critical systems of this
scale and will have much larger ones in the
relatively near future. So we must do
something, but what? That is the question
addressed in this article.

Why Defective Systems Work
To understand the software quality prob-
lem, the first question we must answer is If
today’s software is so defective, why aren’t there
more software quality disasters? The answer is
that software is an amazing technology.
Once you test it and fix all of the prob-
lems found, that software will always work
under the conditions for which it was test-
ed. It will not wear out, rust, rot, or get
tired. The reason there are not more soft-
ware disasters is that testers have been
able to exercise these systems in just about
all of the ways they are typically used. So,
to solve the software quality problem, all
we must do is keep testing these systems
in all of the ways they will be used. So
what is the problem?

The problem is complexity. The more
complex these systems become, the more

different ways they can be used, and the
more ways users can use them, the harder
it is to test all of these conditions in
advance. This was the logic behind the
beta-testing strategy started at IBM with
the OS/360 system more than 40 years
ago. Early copies of the new system releas-
es were sent to a small number of trusted
users and IBM then fixed the problems
they found before releasing the public ver-
sion. This strategy was so successful that it
has become widely used by almost all ven-
dors of commercial software.

Unfortunately, however, the beta-test-
ing strategy is not suitable for life-critical
systems. The V-22 Osprey helicopter, for
example, uses a tilting wing and rotor sys-
tem in order to fly like an airplane and
land like a helicopter. In one test flight, the
hydraulic system failed just as the pilot was
tilting the wing to land. While the aircraft
had a built-in back-up system to handle
such failures, the aircraft had not been
tested under those precise conditions, and
the defect in the back-up system’s soft-
ware had not been found. The defect
caused the V-22 to become unstable and
crash, killing all aboard.

The problem is that as systems
become more complex, the number of
possible ways to use these systems grows
exponentially. The testing problem is fur-
ther complicated by the fact that the way
such systems are configured and the envi-
ronments in which they are used also
affect the way the software is executed.
Table 1 lists some of the variations that
must be considered in testing complex
systems. An examination of the number
of possibilities for even relatively simple
systems shows why it is impractical to test
all possibilities for any complex system. So
why is complex software so defective?

Some Facts
Software is and must remain a human-
produced product. While tools and tech-
niques have been devised to automate the
production of code once the requirements

The Software Quality Challenge
Watts S. Humphrey

The Software Engineering Institute

Many aspects of our lives are governed by large, complex systems with increasingly complex software, and the safety, securi-
ty, and reliability of these systems has become a major concern. As the software in today’s systems grows larger, it has more
defects, and these defects adversely affect the safety, security, and reliability of the systems. This article explains why the com-
mon test-and-fix software quality strategy is no longer adequate, and characterizes the properties of the quality strategy we
must pursue to solve the software quality problem in the future.

Software Quality

The Software Quality Challenge

June 2008 www.stsc.hill.af.mil 5

and design are known, the requirements
and design must be produced by people.
Further, as systems become increasingly
complex, their requirements and design
grow increasingly complex. This complex-
ity then leads to errors, and these errors
result in defects in the requirements,
design, and the operational code itself.
Thus, even if the code could be automati-
cally generated from the defective require-
ments and design, that code would reflect
these requirements and design defects
and, thus, still be defective.

When people design things, they make
mistakes. The larger and more complex
their designs, the more mistakes they are
likely to make. From course data on thou-
sands of experienced engineers learning
the Personal Software ProcessSM (PSPSM), it
has been found that developers typically
inject about 100 defects into every 1,000
lines of the code they write [1]. The distri-
bution for the total defects injected by 810
experienced developers at the beginning of
PSP training is shown by the total bars in
Figure 1. While there is considerable varia-
tion and some engineers do higher-quality
work, just about everybody injects defects.

Developers use various kinds of tools
to generate program code from their
designs, and they typically find and fix
about half of their defects during this
process. This means that about 50 defects
per 1,000 lines of code remain at the start
of initial testing. Again, the distribution of
the defects found in initial testing is also
shown by the test bars in Figure 1.

Developers generally test their pro-
grams until they run without obvious fail-
ures. Then they submit these programs to
systems integration and testing where they
are combined with other similar programs
into larger and larger sub-systems and sys-
tems for progressively larger-scale testing.
The defect content of programs entering
systems testing typically ranges between
10 and 20 defects per 1,000 lines.

The most disquieting fact is that test-
ing can only find a fraction of the defects
in a program. That is, the more defects a
program contains at test entry, the more it
is likely to have at test completion. The
reason for this is the point previously
made about extensive testing. Clearly, if
defects are randomly sprinkled through-
out a large and complex software system,
some of them will be in the most rarely
used parts of the system and others will
be in those parts that are only exercised
under failure conditions. Unfortunately,
these rarely used parts are the ones most

likely to be exercised when such systems
are subjected to the stresses of high trans-
action volume, accidents, failures, or mili-
tary combat.

The Defect Removal Problem
A defect is an incorrect or faulty con-
struction in a product. For software,
defects generally result from mistakes that
the designers or developers make as they
produce their products. Examples are
oversights, misunderstandings, and typos.
Furthermore, since defects result from
mistakes, they are not logical. As a conse-
quence, there is no logical or deductive
process that could possibly find all of the
defects in a system. They could be any-
where, and the only way to find all of the
defects with testing is to exhaustively test
every path, function, or system condition.

This leads to the next question which
concerns the testing objective: “Must we
find all of the defects, or couldn’t we just
find and fix those few that would be dan-
gerous?” Obviously, we only need to fix
the defects that would cause trouble, but
there is no way to determine which defects
these are without examining all of the

defects. For example, a complex design
defect that produced a confusing operator
message could pose no danger while a
trivial typographical mistake that changed
a no to a yes could be very dangerous.
Since there is no way to tell in advance
which defects would be damaging, we
must try to find them all. Then, after find-
ing them, we must fix at least all of the
ones that would be damaging.

The Testing Problem
Since defects could be anywhere in a large
software system, the only way testing
could find them all would be to complete-
ly test every segment of code in the entire
program. To understand this issue, consid-
er the program structure in Figure 2. This
code fragment has one branch instruction
at point B; three segments: A to B, B to C,
and B to D; and two possible paths or
routes through the fragment: A-B-C and
A-B-D. So, for a program fragment like
this, there could be defects on any of the
code segments as well as in the branch
instruction itself.

For a large program, the numbers of
possible paths or routes through a pro-
gram can vary by program type, but pro-

1. Data rates
2. Data values
3. Data errors
4. Configuration variations
5. Number, type, and timing of

simultaneous processes
6. Hardware failures
7. Network failures
8. Operator errors
9. Version changes
10. Power variations

300

250

200

150

100

50

0
1st Quartile 2nd Quartile 3rd Quartile 4th Quartile

Total

Test

To
ta
l
d
e
fe
c
ts
/

th
o
u
s
a
n
d
li
n
e
s
o
f
c
o
d
e

Figure 1: Total and Test Defect Rates of 810 Experienced Engineers

1. Data rates
2. Data values
3. Data errors
4. Configuration variations
5. Number, type, and timing of

simultaneous processes
6. Hardware failures
7. Network failures
8. Operator errors
9. Version changes
10. Power variations

300

250

200

150

100

50

0
1st Quartile 2nd Quartile 3rd Quartile 4th Quartile

Total

Test

To
ta
ld
ef
ec
ts
/

th
o
u
sa
n
d
lin
es
o
f
co
d
e

A

D

C

B

Table 1: Some of the Possible Testing
Variations

SM Personal Software Process and PSP are service marks of
Carnegie Mellon University.

Switches Paths

1 2
4 6
9 20
16 70
36 924
49 3,432
64 12,870
81 48,620
100 184,756
400 1.38E+11

A

Design/Code

Unit Test D/KLOC

Design Review Time

Table 2: Possible Paths Through a Network

Software Quality

grams generally have about one branch
instruction for every 10 or so lines of code.
This means that a million-line program
would typically have about 100,000 branch
instructions. To determine the magnitude
of the testing problem for such a system,
we must determine the number of test
paths through a network of 100,000
switches. Here, from Figure 3, we can cal-
culate that, for a simple network of 16
switches, there are 70 possible paths from
A to B. As shown in Table 2, the number of
possible paths through larger networks
grows rapidly with 100 switches having
184,756 possible paths and 400 switches
having 1.38E+11 possible paths. Clearly,
the number of possible paths through a
system with 100,000 switches could, for

practical purposes, be considered infinite.
Furthermore, even if comprehensive path
testing were possible, more than path test-
ing would be required to uncover the
defects that involved timing, synchroniza-
tion, or unusual operational conditions.

Conclusions on Testing
At this point, several conclusions can be
drawn. First, today’s large-scale systems
typically have many defects. Second, these
defects generally do not cause problems
as long as the systems are used in ways
that have been tested. Third, because of
the growing complexity of modern sys-
tems, it is impossible to test all of the
ways in which such systems could be
used. Fourth, when systems are stressed

in unusual ways, their software is most
likely to encounter undiscovered defects.
Fifth, under these stressful conditions,
these systems are least likely to operate
correctly or reliably.

Therefore, with the current commonly
used test-based software quality strategy,
large-scale life-critical systems will be least
reliable in emergencies – and that is when
reliability is most important.

Successful Quality Strategies
Organizations have reached quality levels
of a few defects per million parts, but these
have been with manufacturing and not
design or development processes. In the
manufacturing context, the repetitive work
is performed by machines, and the quality
challenge is to consistently and properly
follow all of the following steps:
• Establish quality policies, goals, and

plans.
• Properly set up the machines.
• Keep the machines supplied with high-

quality parts and materials.
• Maintain the entire process under con-

tinuous statistical control.
• Evaluate the machine outputs.
• Properly handle all deviations and

problems.
• Suitably package, distribute, or other-

wise handle the machine outputs.
• Consistently strive to improve all

aspects of the production and evalua-
tion processes.
While these eight steps suggest some

approaches to consider for software devel-
opment, they are not directly applicable for
human-intensive work such as design and
development. However, by considering an
analogous approach with people instead of
machines, we begin to see how to proceed.

The Eight Elements of
Software Quality Management
The eight steps required to consistently
produce quality software are based on the
five basic principles of software quality
shown in the Software Quality Principles
sidebar. With these principles in mind, we
can now define the eight steps required for
an effective software quality initiative.
1. Establish quality policies, goals, and

plans.
2. Properly train, coach, and support the

developers and their teams.
3. Establish and maintain a requirements

quality-management process.
4. Establish and maintain statistical con-

trol of the software engineering process.
5. Review, inspect, and evaluate all prod-

uct artifacts.
6. Evaluate all defects for correction and

6 CROSSTALK The Journal of Defense Software Engineering June 2008

A

D

C

B

Figure 2: A Three-Segment Code Fragment

2

Switches Paths

Possible
Path

A

B
Figure 3: Possible Paths Through a 16-Switch Network

June 2008 www.stsc.hill.af.mil 7

The Software Quality Challenge

to identify, fix, and prevent other simi-
lar problems.

7. Establish and maintain a configuration
management and change control sys-
tem.

8. Continually improve the development
process.
The following sections discuss each of

these eight steps and relate them to the
software quality principles as shown in the
sidebar.

Step 1: Quality Policies, Goals, and
Plans
Policies, goals, and plans go together and
form the essential foundation for all effec-
tive quality programs. The fundamental
policy that forms the foundation for the
quality program is that quality is and must
be the first priority. Many software devel-
opers, managers, and customers would
argue that product function is critical and
that project schedule and program cost are
every bit as important as quality. In fact,
they will argue that cost, schedule, and
quality must be traded off.

The reason this is a policy issue is given
in the first principle of software quality
stated in the sidebar: Properly managed quali-
ty programs reduce total program cost, increase
business value and quality of delivered products,
and shorten development times. Customers
must demand quality work from their sup-
pliers and management must believe that if
the quality program increases program
costs or schedules, that quality program is
not properly managed. There is, in fact, no
cost/schedule/quality trade-off: manage
quality properly, and cost and schedule
improvements will follow. Everyone in the
organization must understand and accept
this point: it is always faster and cheaper to
do the job right the first time than it is to
waste time fixing defective products after
they have been developed.

Once the basic quality policy is in
place, customers, managers, and develop-
ers must then establish and agree on the
quality goals for each project. The princi-
pal goal must be to find and remove all
defects in the program at the earliest pos-
sible time, with the overall objective of
removing all defects before the start of
integration and system test. With the goals
established, the development teams must
make measurable quality plans that can be
tracked and assessed to ensure that the
project is producing quality work. This in
turn requires that the quality of the work
be measured at every step, and that the
quality data be reviewed and assessed by

the developers, their teams, management,
and the customer. When defective work is
found, it must be promptly fixed. The
principle is that defects cost money. The
longer they are left in the product, the
more work will be built on this defective
foundation, and the more it will cost to
find and fix them [2].

Step 2:Train and Coach Developers
and Teams
Quality work is not done by accident; it
takes dedicated effort and properly skilled
and motivated professionals. The third
principle of software quality is absolutely
essential: The developers must feel personally
responsible for the quality of the products they pro-
duce. If they do not, they will not strive to
produce quality results, and later trying to
find and fix their defects will be costly,
time consuming, and ineffective.
Convincing developers that quality is their
personal responsibility and teaching them

the skills required to measure and manage
the quality of their work, requires training.
While it would be most desirable for them
to get this skill and the required knowledge
before they graduate from college, practic-
ing software developers must generally
learn them from using methods such as
the PSP.

With properly trained developers, the
development teams then need proper
management, leadership, and coaching.
Again, the Team Software ProcessSM

(TSPSM) can provide this guidance and sup-
port [3, 4, 5].

Step 3: Manage Requirements
Quality
One fundamental truth of all quality pro-
grams is that you must start with a quality
foundation to have any hope of producing
a quality result. In software, requirements
are the foundation for everything we do,
so the quality of requirements is para-

Software Quality Principles*
1. Properly managed quality programs reduce total program cost, increase business

value and quality of delivered products, and shorten development times.
1.1. If cost or development times increase, the quality program is not being proper-

ly implemented.
1.2. The size of a product, including periodic reevaluation of size as changes occur,

must be estimated and tracked.
1.3. Schedules, budgets, and quality commitments must be mutually consistent and

based on sound historical data and estimating methods.
1.4. The development approach must be consistent with the rate of change in

requirements.
2. To get quality work, the customer must demand it.

2.1. Attributes that define quality for a software product must be stated in measur-
able terms and formally agreed to between developers and customers as part
of the contract. Any instance of deviation from a specified attribute is a defect.

2.2. The contract shall specify the agreed upon quality level, stated in terms of the
acceptable quantity or ratio of deviations (defects) in the delivered product.

3. The developers must feel personally responsible for the quality of the products they
produce.
3.1. The development teams must plan their own work and negotiate their commit-

ments with management and the customer.
3.2. Software managers must provide appropriate training for developers.
3.3. A developer is anyone who produces a part of the product, be it a designer, doc-

umenter, coder, or systems designer.
4. For the proper management of software development projects, the development

teams themselves must plan, measure, and control the work.
4.1. Project teams must have knowledge and experience in the relevant technolo-

gies and applications domains commensurate with project size and other risk
factors.

4.2. Removal yield at each step and in total pre-delivery must be measured.
4.3. Effort associated with each activity must be recorded.
4.4. Defects discovered by each appraisal method must be recorded.
4.5. Measurements must be recorded by those performing the activity and be ana-

lyzed by both developers and managers.
5. Software management must recognize and reward quality work.

5.1. Projects must utilize a combination of appraisal methods sufficient to verify the
agreed defect levels.

5.2. Managers must use measures to ensure high quality and improve processes.
5.3. Managers must use measurements with due respect for individuals.

* These principles were defined by a group of 13 software quality experts convened by Taz Daughtrey. The
experts are: Carol Dekkers, Gary Gack, Tom Gilb, Watts Humphrey, Joe Jarzombek, Capers Jones, Stephen
Kan, Herb Krasner, Gary McGraw, Patricia McQuaid, Mark Paulk, Colin Tully, and Jerry Weinberg.

SM Team Software Process and TSP are service marks of
Carnegie Mellon University.

Software Quality

mount. However, the requirements quality
problem is complicated by two facts.

First, the quality measures must not be
abstract characteristics of a requirements
document; they should be precise and mea-
surable items such as defect counts from
requirements inspections or counts of
requirements defects found in system test
or customer use. However, to be most help-
ful, these quality measures must also address
the precise understanding the developers
themselves have of the requirements
regardless of what the requirements origi-
nators believe or how good a requirements
document has been produced. The develop-
ers will build what they believe the require-
ments say and not what the requirements
developers intended to say. This means that
the quality-management problem the
requirements process must address is the
transfer of understanding from the require-
ments experts to the software developers.

The second key requirements fact is
that the requirements are dynamic. As peo-
ple learn more about what the users need
and what the developers can build, their
views of what is needed will change. This
fact enormously complicates the require-
ments-management problem. The reason
is that people’s understanding of their
needs evolves gradually and often without
any conscious appreciation of how much
their views have changed. There is also a
time lag: Even when the users know that
their needs have changed, it takes time for
them to truly understand their new ideas
and to communicate them to the develop-
ers. Even after the developers understand
the changes, they cannot just drop every-
thing and switch to the new version.

To implement a change, the design and
implementation implications of every
requirements change must be appraised;
plans, costs, and commitments adjusted;

and agreement reached on how to incor-
porate this new understanding into the
development work. This means that the
requirements must be recognized as evolv-
ing through a sequence of versions while
the development estimates, plans, and
commitments are progressing through a
similar but delayed sequence of versions.
And finally, the product itself will ulti-
mately be produced in a further delayed
sequence of versions. The quality manage-
ment problem concerns managing the
quality and maintaining the synchroniza-
tion of this sequence of parallel require-
ments, plan, design, and product versions.

Step 4: Statistical Process Control
While statistical process control is a large
subject, we need only discuss two aspects:
process management and continuous
process improvement. The first aspect,
process management, is discussed here,
and process improvement is addressed in
Step 8.

The first step in statistical process
management is to redefine the quality
management strategy. To achieve high lev-
els of software quality, it is necessary to
switch from looking for defects to manag-
ing the process. As noted earlier, to achieve
a quality level of 10 defects per million
lines with current software quality manage-
ment methods, the developers would have
to find and fix all but 10 of the 10,000 to
20,000 defects in a program with a 40,000
page listing. Unless someone devises a
magic machine that could flawlessly identi-
fy every software defect, it would be clear-
ly impossible to improve human search
and analysis skills to this degree.
Therefore, achieving these quality levels
through better testing, reviews, or inspec-
tions is not feasible.

A more practical strategy is to measure

and manage the quality of the process used
to produce the program’s parts. If, for
example, we could devise a process that
would consistently produce 1,000-line
modules that each had less than a one per-
cent chance of having a single defect, a sys-
tem of 1,000 of these modules would like-
ly have less than 10 defects per million
lines. One obvious problem with this strat-
egy concerns our ability to devise and
properly use such a process.

There has been considerable progress
in producing and using such a process.
This is accomplished by measuring each
developer’s process and producing a
Process Quality Index (PQI). The TSP
quality profile, which forms the basis for
the PQI measure, is shown in Figure 5 [6].
Then, the developers and their teams use
standard statistical process management
techniques to manage the quality of all
dimensions of the development work [7].
Data on early TSP teams show that by fol-
lowing this practice, quality is substantially
improved [8].

Step 5: Quality Evaluation
Quality evaluation has two elements: eval-
uating the quality of the process used to
produce each product element, and evalu-
ating the quality of the products produced
by that process. The reason to measure
and evaluate process quality, of course, is
to guide the process-improvement activi-
ties discussed in Step 8. The Capability
Maturity Model® Integration (CMMI®)
model and appraisal methods were devel-
oped to guide process-quality assessments,
and the TSP process was developed to
guide organizations in defining, using, and
improving high-quality processes as well
as in measuring, managing, and evaluating
product quality.

To evaluate process quality, the devel-
opers and their teams must gather data on
their work, and then evaluate these data
against the goals they established in their
quality plan. If any process or process
step falls below the team-defined quality
threshold, the resulting products must be
evaluated for repair, redevelopment, or
replacement, and the process must be
brought into conformance. These actions
must be taken for every process step and
especially before releasing any products
from development into testing. In product
evaluation, the system integration and
testing activities are also measured and
evaluated to determine if the final product
has reached a suitable quality level or if
some remedial action is required.

8 CROSSTALK The Journal of Defense Software Engineering June 2008

2

Switches Paths

1 2
4 6
9 20
16 70
36 924
49 3,432
64 12,870
81 48,620
100 184,756
400 1.38E+11

Possible
Path

A

B

Design/Code Time

Compile D/KLOC

Code Review TimeUnit Test D/KLOC

Design Review Time

Figure 5: TSP Software Quality Profile [6]

® Capability Maturity Model and CMMI are registered in the
U.S. Patent and Trademark Office by Carnegie Mellon
University.

The Software Quality Challenge

Step 6: Defect Analysis
Perhaps the most important single step in
any quality management and improvement
system concerns defect data. Every defect
found after development, whether by final
testing, the users, or any other means must
be carefully evaluated and the evaluation
results used to improve both the process
and the product. The reason that these
data are so important is that they concern
the process failings. Every defect found
after development represents a failure of
the development process, and each such
failure must be analyzed and the results
used to make two kinds of improvements.

The first improvement – and the one
that requires the most rapid turnaround
time – is determining where in the product
similar defects could have been made and
taking immediate action to find and fix all
of those defects. The second improvement
activity is to analyze these defects to deter-
mine how to prevent similar defects from
being injected in the future, and to devise a
means to more promptly find and fix all
such defects before final testing or release
to the user.

Step 7: Configuration Management
For any large-scale development effort,
configuration management (CM) is critical.
This CM process must cover the product
artifacts, the requirements, the design, and
the development process. It is also essen-
tial to measure and manage the quality of
the CM process itself. Since CM processes
are relatively standard, however, they need
not be discussed further.

Step 8: Process Improvement
The fundamental change required by this
software quality-management strategy is to
use the well-proven methods of statistical
process control to guide continuous
process improvement [7]. Here, however,
we are not talking about improving the tol-
erances of machines or the purity of mate-
rials; we are talking about managing the
quality levels of what people do, as well as
the quality levels of their work products.
While people will always make mistakes,
they tend to make the same mistakes over
and over. As a consequence, when devel-
opers have data on the defects they per-
sonally inject during their work and know
how to use these data, they and their team-
mates can learn how to find just about all
of the mistakes that they make. Then, in
defining and improving the quality-man-
agement process, every developer must use
these data to optimally utilize the full range
of available defect detection and preven-
tion methods.

Regardless of the quality management
methods used (i.e., International Organ-
ization for Standardization, correctness-by-
construction, or AS9100) continuous
improvement strategies such as those
defined by CMMI and TSP should be
applied to the improvement process itself.
This means that the process quality mea-
sures, the evaluation methods, and the deci-
sion thresholds must also be considered as
important aspects of continuous process
improvement. Furthermore, since every
developer, team, project, and organization
is different, it means that this continuous
improvement process must involve every
person on every development team and on
every project in the organization.

Conclusion
While we face a major challenge in improv-
ing software quality, we also have substan-
tial and growing quality needs. It should
now be clear to just about everyone in the
software business that the current testing-
based quality strategy has reached a dead
end. Software development groups have
struggled for years to get quality improve-
ments of 10 to 20 percent by trying differ-
ent testing strategies and methods, by
experimenting with improved testing tools,
and by working harder.

The quality improvements required are
vast, and such improvements cannot be
achieved by merely bulling ahead with the
test-based methods of the past. While the
methods described in this article have not
yet been fully proven for software, we now
have a growing body of evidence that they
will work – at least better than what we
have been doing. What is more, this quali-
ty strategy uses the kinds of data-based
methods that can guide long-term contin-
uous improvement. In addition to improv-
ing quality, this strategy has also been
shown to save time and money.

Finally, and most importantly, software
quality is an issue that should concern every-
one. Poor quality software now costs each of
us time and money. In the immediate future,
it is also likely to threaten our lives and liveli-
hoods. Every one of us, whether a develop-
er, a manager, or a user, must insist on qual-
ity work; it is the only way we will get the
kind of software we all need.u

Acknowledgements
My thanks to Bob Cannon, David
Carrington, Tim Chick, Taz Daughtrey,
Harry Levinson, Julia Mullaney, Bill
Nichols, Bill Peterson, Alan Willett, and
Carol Woody for reviewing this article and
offering their helpful suggestions. I also
much appreciate the constructive sugges-
tions of the CrossTalk editorial board.

References
1. Humphrey, W.S. PSP: A Self-Im-

provement Process for Software Engi-
neers. Reading, MA: Addison-Wesley,
2005.

2. Jones, C. Software Quality: Analysis
and Guidelines for Success. New York:
International Thompson Computer
Press, 1997.

3. Humphrey, W.S. Winning With Soft-
ware: An Executive Strategy. Reading,
MA: Addison-Wesley, 2002.

4. Humphrey, W.S. TSP: Leading a De-
velopment Team. Reading, MA:
Addison-Wesley, 2006.

5. Humphrey, W.S. TSP: Coaching Devel-
opment Teams Reading, MA: Addi-
son-Wesley, 2006.

6. Humphrey, W.S. “Three Dimensions of
Process Improvement, Part III: The
Team Process” CrossTalk Apr. 1998.

7. Florac, S., and A.D. Carleton. Measur-
ing the Software Process: Statistical
Process Control for Software Process
Improvement. Reading, MA: Addison
Wesley, 1999.

8. Davis, N., and J. Mullaney. “Team
Software Process in Practice.” SEI
Technical Report CMU/SEI-2003-TR
-014, Sept. 2003.

June 2008 www.stsc.hill.af.mil 9

About the Author

Watts S. Humphrey
joined the Software En-
gineering Institute (SEI)
after his retirement from
IBM. He established the
SEI’s Process Program

and led development of the CMM for
Software, the PSP, and the TSP. He man-
aged IBM’s commercial software devel-
opment and was vice president of tech-
nical development. He is an SEI Fellow,
an Association of Computing Machin-
ery member, an Institute of Electrical
and Electronics Engineers Fellow, and a
past member of the Malcolm Baldrige
National Quality Award Board of
Examiners. In a recent White House cer-
emony, the President awarded him the
National Medal of Technology. He
holds graduate degrees in physics and
business administration.

SEI
4500 Fifth AVE
Pittsburgh, PA 15213-2612
Phone: (412) 268-6379
Fax: (412) 268-5758
E-mail: watts@sei.cmu.edu

Software Quality

10 CROSSTALK The Journal of Defense Software Engineering June 2008

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
nicole.kentta@hill.af.mil.

COMING EVENTS

June 30-July 2
The 17th International Conference on

Software Engineering and Data
Engineering

Los Angeles, CA
http://sce.cl.uh.edu/sede08/

July 14-17
2008 World Congress in Computer Science,

Computer Engineering and Applied
Computing Conference

Las Vegas, NV
www.world-academy-of

-science.org/worldcomp08/ws/
conferences

July 16-17
National Security Space Policy and

Architecture Symposium
Chantilly, VA

www.ndia.org

July 20-24
International Symposium on Software

Testing and Analysis
Seattle, WA

http://issta08.rutgers.edu

July 27-28
The 44th Annual Aerospace and Defense

Contract Management Conference
Garden Grove, CA

www.ncmahq.org/meetings/ADC06

July 28-30
Night Vision Systems

Alexandria, VA
www.iqpc.com/ShowEvent.aspx?

id=97070

2009

2009 Systems and Software
Technology Conference

Salt Lake City, UT
www.sstc-online.org

Software Quality Profile
www.sei.cmu.edu/publications/articles/
quality-profile/index.html
The software community has been slow
to use data to measure software quality.
This article discusses the reasons for this
problem, and describes a way to use
process measurements to assess product
quality. When the correct data are gath-
ered for every engineer and for every step
of the development process, a host of
quality measures can be derived to evalu-
ate software quality.

The Software Quality Page
www.swquality.com/users/pustaver/
index.shtml
Here is your connection to the world of
software quality, standards, and process
improvement. The Software Quality
Web site contains links to areas including
software quality and testing, software
inspections and reviews, quality and
process metrics, software quality assur-
ance, and other standards, as well as pro-
vides helpful links to other software and
quality organizations.

American Society for
Quality
www.asq.org/pub/sqp/
This site offers articles and discussion on
basic concepts, quality tools, organiza-
tion-wide approaches, people creating
quality, using data, specific applications,
and other software quality-related issues.

Software Q&A and Testing
Resource Center
www.softwareqatest.com
There are many categories of questions
and answers when it comes to software
quality and assurance testing. This Web
site breaks them down into categories
that include frequently asked questions,
not-so-frequently asked questions, test-
ing resources, test tools, site management
tools, jobs, news, and more.

Why Software Quality
Matters
www.baselinemag.com/c/a/projects
-processes/why-software-quality-matters
As software spreads from computers into
auto engines, factory robots, hospital X-
ray machines and elsewhere, defects are
no longer a problem to be managed.
They must be predicted and excised or
else unanticipated uses will lead to unin-
tended consequences. This intriguing

article proposes innovative solutions to
today’s emerging software quality issues.

Society for Software
Quality
www.ssq.org
The Society for Software Quality (SSQ) is
a membership organization for those inter-
ested in promoting quality as a universal
goal for software. The SSQ promotes
increased knowledge and interest in the
technology associated with the develop-
ment and maintenance of quality software.

Better Software Magazine
www.stickyminds.com/bettersoftware/
magazine.asp
Better Software is the magazine for soft-
ware professionals who care about quali-
ty. Each issue addresses relevant, timely
information to help with building better
software. Better Software delivers in-depth
articles on testing, tools, defect tracking,
metrics, and management, and is the
only commercial magazine exclusively
dedicated to software professionals.

Software Test and
Performance Magazine
www.stpmag.com
Software Test & Performance is written for
software and application development
managers, project managers, team lead-
ers, and test and quality assurance man-
agers. Articles in the magazine provide
useful information to help those in the
field understand trends and emerging
technologies, come to grip with new and
timeless challenges, adopt new best prac-
tices concepts, and ultimately make bet-
ter decisions to improve software quality.

Handbook of Software
Quality Assurance
www.amazon.com/handbook-software
-quality-assurance-3rd/dp/0130104701
The software industry has witnessed a
dramatic rise in the impact and effective-
ness of software quality assurance. From
its infancy when a handful of software
pioneers explored the first applications of
quality assurance to the development of
software, software quality assurance has
become integrated into all phases of soft-
ware development. This handbook capi-
talizes on the talents and skills of the
experts who deal with the implementa-
tion of software quality assurance on a
daily basis.

WEB SITES

June 2008 www.stsc.hill.af.mil 11

There are two very important measure-
ments of software quality that are crit-

ical to the industry:
1. Defect potentials
2. Defect removal efficiency

All software managers and quality
assurance personnel should be familiar
with these measurements because they
have the largest impact on software quality,
cost, and schedule of any known measures.

The phrase defect potentials refers to the
probable numbers of defects that will be
found during the development of software
applications. As of 2008, the approximate
averages in the United States for defects in
five categories, measured in terms of
defects per function point and rounded
slightly so that the cumulative results are an
integer value for consistency with other
publications by the author, follow.

Note that defect potentials should be
measured with function points and not
with lines of code. This is because most of
the serious defects are not found in the
code itself, but rather in requirements and
design. Table 1 shows the averages for
defect potentials in the U.S. circa 2008.

The measured range of defect poten-
tials is from just below two defects per
function point to about 10 defects per
function point. Defect potentials correlate
with application size. As application sizes
increase, defect potentials also rise.

A useful approximation of the relation-
ship between defect potentials and defect
size is a simple rule of thumb: application
function points raised to the 1.25 power
will yield the approximate defect potential
for software applications. Actually, this rule
applies primarily to applications developed
by organizations at Capability Maturity
Model® (CMM®) Level 1. For the higher
CMM levels, lower powers would occur.
Reference [1] shows additional factors that
affect the rule of thumb1.

The phrase defect removal efficiency refers
to the percentage of the defect potentials
that will be removed before the software
application is delivered to its users or cus-
tomers. As of 2007, the average for defect
removal efficiency in the U.S. was about 85
percent.

If the average defect potential is five
bugs – or defects – per function point and
removal efficiency is 85 percent, then the
total number of delivered defects will be
about 0.75 per function point. However,
some forms of defects are harder to find
and remove than others. For example,
requirements defects and bad fixes are
much more difficult to find and eliminate
than coding defects.

At a more granular level, the defect
removal efficiency against each of the five
defect categories is approximate in Table 2.

Note that the defects discussed in this
section include all severity levels, ranging
from severity 1: show stoppers, down to
severity 4: cosmetic errors. Obviously, it is
important to measure defect severity levels
as well as recording numbers of defects 2.

There are large ranges in terms of both
defect potentials and defect removal effi-
ciency levels. The best in class organizations
have defect potentials that are below 2.50
defects per function point coupled with
defect removal efficiencies that top 95 per-
cent across the board.

Defect removal efficiency levels peak at
about 99.5 percent. In examining data from
about 13,000 software projects over a peri-
od of 40 years, only two projects had zero
defect reports in the first year after release.

This is not to say that achieving a defect
removal efficiency level of 100 percent is
impossible, but it is certainly very rare.

Organizations with defect potentials
higher than seven per function point cou-
pled with defect removal efficiency levels
of 75 percent or less can be viewed as
exhibiting professional malpractice. In
other words, their defect prevention and
defect removal methods are below accept-
able levels for professional software organi-
zations.

Most forms of testing average only
about 30 to 35 percent in defect removal
efficiency levels and seldom top 50 percent.
Formal design and code inspections, on the
other hand, often top 85 percent in defect
removal efficiency and average about 65
percent.

As can be seen from the short discus-
sions here, measuring defect potentials and
defect removal efficiency provide the most
effective known ways of evaluating various
aspects of software quality control. In gen-
eral, improving software quality requires
two important kinds of process improve-
ment: 1) defect prevention and 2) defect
removal.

The phrase defect prevention refers to

Measuring Defect Potentials and
Defect Removal Efficiency©

There are two measures that have a strong influence on the outcomes of software projects: 1) defect potentials and 2) defect
removal efficiency. The term defect potentials refers to the total quantity of bugs or defects that will be found in five software arti-
facts: requirements, design, code, documents, and bad fixes, or secondary defects. The term defect removal efficiency refers to the
percentage of total defects found and removed before software applications are delivered to customers. As of 2007, the average
for defect potentials in the United States was about five defects per function point. The average for defect removal efficiency in the
United States was only about 85 percent. The average for delivered defects was about 0.75 defects per function point.

Capers Jones
Software Productivity Research, LLC

Requirements defects 1.00
Design defects 1.25
Coding defects 1.75
Documentation defects 0.60
Bad fixes 0.40
Total 5.00

Defect Origin Defect
Potential

Removal
Efficiency

Defects
Remaining

Requirements defects 1.00 77% 0.23
Design defects 1.25 85% 0.19
Coding defects 1.75 95% 0.09
Documentation defects 0.60 80% 0.12
Bad fixes 0.40 70% 0.12
Total 5.00 85% 0.75

Table 2: Defect Removal Efficiency

Requirements defects 1.00
Design defects 1.25
Coding defects 1.75
Documentation defects 0.60
Bad fixes 0.40
Total 5.00

Defect Origin Defect
Potential

Requirements defects 1.00
Design defects 1.25
Coding defects 1.75
Documentation defects 0.60
Bad fixes 0.40
Total 5.00

Table 1: Averages for Defect Potential

© 2008 Capers Jones. All rights reserved.
® Capability Maturity Model and CMM are registered in the

U.S. Patent and Trademark Office by Carnegie Mellon
University.

Software Quality

technologies and methodologies that can
lower defect potentials or reduce the num-
bers of bugs that must be eliminated.
Examples of defect prevention methods
include joint application design, structured
design, and also participation in formal
inspections3.

The phrase defect removal refers to meth-
ods that can either raise the efficiency lev-
els of specific forms of testing or raise the
overall cumulative removal efficiency by
adding additional kinds of review or test
activity. Of course, both approaches are
possible at the same time.

In order to achieve a cumulative defect
removal efficiency of 95 percent, it is nec-
essary to use approximately the following
sequence of at least eight defect removal
activities:
• Design inspections.
• Code inspections.
• Unit tests.
• New function tests.
• Regression tests.
• Performance tests.
• System tests.
• External beta tests.

To go above 95 percent, additional
removal stages are needed. For example,
requirements inspections, test case inspec-
tions, and specialized forms of testing,
such as human factors testing, add to
defect removal efficiency levels.

Since each testing stage will only be
about 30 percent efficient, it is not feasible
to achieve a defect removal efficiency level
of 95 percent by means of testing alone.
Formal inspections will not only remove
most of the defects before testing begins,
it also raises the efficiency level of each
test stage. Inspections benefit testing
because design inspections provide a more
complete and accurate set of specifications
from which to construct test cases.

From an economic standpoint, com-
bining formal inspections and formal test-
ing will be cheaper than testing by itself.
Inspections and testing in concert will also
yield shorter development schedules than
testing alone. This is because when testing
starts after inspections, almost 85 percent
of the defects will already be gone.
Therefore, testing schedules will be short-
ened by more than 45 percent.

When IBM applied formal inspections
to a large database project, delivered
defects were reduced by more than 50 per-
cent from previous releases, and the over-
all schedule was shortened by about 15
percent. Testing itself was reduced from
two shifts over a 60-day period to one shift
over a 40-day period. More importantly,
customer satisfaction improved to good
from prior releases where customer satis-

faction previously had been very poor.

Measurement of Defect
Potentials and Defect Removal
Efficiency
Measuring defect potentials and defect
removal efficiency levels are among the
easiest forms of software measurement,
and are also the most important. To mea-
sure defect potentials it is necessary to
keep accurate records of all defects found
during the development cycle, which is
something that should be done as a matter
of course. The only difficulty is that private
forms of defect removal such as unit test-
ing will need to be done on a volunteer
basis.

Measuring the numbers of defects
found during reviews, inspections, and
testing is also straightforward. To complete
the calculations for defect removal effi-
ciency, customer-reported defect reports
submitted during a fixed time period are
compared against the internal defects
found by the development team. The nor-
mal time period for calculating defect
removal efficiency is 90 days after release.

As an example, if the development and
testing teams found 900 defects before
release, and customers reported 100
defects in the first three months of usage,
it is apparent that the defect removal effi-
ciency would be 90 percent.

Unfortunately, although measurements
of defect potentials and defect removal
efficiency levels should be carried out by
100 percent of software organizations, the
frequency of these measurements circa
2008 is only about five percent of U.S.
companies. In fact, more than half of U.S.
companies do not have any useful quality
metrics at all. More than 80 percent of U.S.
companies, including the great majority of
commercial software vendors, have only
marginal quality control and are much
lower than the optimal 95 percent defect
removal efficiency level. This fact is one of
the reasons why so many software projects
fail completely or experience massive cost
and schedule overruns. Usually failing pro-
jects seem to be ahead of schedule until
testing starts, at which point huge volumes
of unanticipated defects stop progress
almost completely.

As it happens, projects that average
about 95 percent in cumulative defect
removal efficiency tend to be optimal in
several respects. They have the shortest
development schedules, the lowest devel-
opment costs, the highest levels of cus-
tomer satisfaction, and the highest levels
of team morale. This is why measures of
defect potentials and defect removal effi-

ciency levels are important to the industry
as a whole; these measures have the great-
est impact on software performance of
any known metrics.

Additionally, as an organization pro-
gresses from the U.S. average of 85 per-
cent in defect removal efficiency up to 95
percent, the saved money and shortened
development schedules result because
most schedule delays and cost overruns are
due to excessive defect volumes during
testing. However, to climb above 95 per-
cent defect removal efficiency up to 99
percent does require additional costs. It
will be necessary to perform 100 percent
inspections of every deliverable, and test-
ing will require about 20 percent more test
cases than normal.

It is an interesting sociological obser-
vation that measurements tend to change
human behavior. Therefore, it is important
to select measurements that will cause
behavioral changes in positive and benefi-
cial directions. Measuring defect potentials
and defect removal efficiency levels have
been noted to make very beneficial
improvements in software development
practices.

When these measures were introduced
into large corporations such as IBM and
ITT, in less than four years the volumes
of delivered defects had declined by more
than 50 percent, maintenance costs were
reduced by more than 40 percent, and
development schedules were shortened
by more than 15 percent. There are no
other measurements that can yield such
positive benefits in such a short time
span. Both customer satisfaction and
employee morale improved, too, as a
direct result of the reduction in defect
potentials and the increase in defect
removal efficiency levels.u

Reference
1. Jones, Capers. Estimating Software

Costs. 2nd edition. McGraw-Hill, New
York: 2007.

Notes
1. The averages for defect potentials are

derived from studies of about 600
companies and 13,000 projects. Non-
disclosure agreements prevent the
identification of most companies.
However some companies such as
IBM and ITT have provided data on
defect potentials and removal efficien-
cy levels.

2. The normal period for measuring
defect removal efficiency starts with
requirements inspections and ends 90
days after delivery of the software to
its users or customers. Of course, there

12 CROSSTALK The Journal of Defense Software Engineering June 2008

Measuring Defect Potentials and Defect Removal Efficiency

June 2008 www.stsc.hill.af.mil 13

are still latent defects in the software
that will not be found in 90 days, but
having a 90-day interval provides a
standard benchmark for defect
removal efficiency. It might be thought
that extending the period from 90 days
to six months or 12 months would pro-
vide more accurate results; however,
updates and new releases usually come
out after 90 days, so these would dilute
the original defect counts. Latent
defects found after the 90-day period
can exist for years, but on average
about 50 percent of residual latent
defects are found each year. The results
vary with number of users of the
applications. The more users, the faster
residual latent defects are discovered.

3. Formal design and code inspections
are the most effective defect removal
activity in the history of software, and
are also very good in terms of defect
prevention. Once participants in
inspections observe various kinds of
defects in the materials being inspect-
ed, they tend to avoid those defects in
their own work. All software projects
larger than 1,000 function points
should use formal design and code
inspections.

Additional Reading
1. Boehm, Barry W. Software Engineer-

ing Economics. Prentice Hall, Engle-
wood Cliffs, NJ; 1981.

2. Crosby, Philip B. Quality Is Free. New

American Library, Mentor Books.
New York: 1979.

3. Garmus, David, and David Herron.
Function Point Analysis. Addison
Wesley Longman, Boston: 2001.

4. Garmus, David, and David Herron.
Measuring the Software Process: A
Practical Guide to Functional Meas-
urement. Prentice Hall, Englewood
Cliffs, NJ: 1995.

5. Grady, Robert B., and Deborah L.
Caswell. Software Metrics: Establish-
ing a Company-Wide Program. Pren-
tice-Hall: 1987.

6. International Function Point Users
Group. IT Measurement. Addison
Wesley Longman, Boston: 2002.

7. Jones, Capers. Applied Software
Measurement. 3rd edition; McGraw-
Hill, New York: 2008.

8. Jones, Capers. “Sizing Up Software.”
Scientific American New York: Dec.
1998.

9. Jones, Capers. Software Assessments,
Benchmarks, and Best Practices.
Addison Wesley Longman. Boston:
2000.

10. Jones, Capers. Conflict and Litigation
Between Software Clients and De-
velopers. Software Productivity Re-
search, Burlington, MA: 2003.

11. Kan, Stephen H. Metrics and Models
in Software Quality Engineering. 2nd
edition. Addison Wesley Longman,
Boston: 2003.

About the Author

Capers Jones is cur-
rently the president of
Capers Jones and Asso-
ciates, LLC. He is also
the founder and former
chairman of Software

Productivity Research (SPR) where he
holds the title of Chief Scientist
Emeritus. He is a well-known author
and international public speaker, and
has authored the books “Patterns of
Software Systems Failure and Suc-
cess,” “Applied Software Measure-
ment,” “Software Quality: Analysis
and Guidelines for Success,” “Esti-
mating Software Costs,” and “Soft-
ware Assessments, Benchmarks, and
Best Practices.” Jones and his col-
leagues from SPR have collected his-
torical data from more than 600 cor-
porations and more than 30 govern-
ment organizations. This historical
data is a key resource for judging the
effectiveness of software process
improvement methods.

Software Productivity
Research, LLC
Phone: (877) 570-5459
Fax: (877) 570-5459
E-mail: cjonesiii@cs.com

Data and Data Management
December 2008

Submission Deadline: July 18, 2008

Engineering for Production
January 2009

Submission Deadline: August 15, 2008

Software Measurement
February 2009

Submission Deadline: September 12, 2008

Please follow the Author Guidelines for CrossTalk, available on the Internet
at <www.stsc.hill.af.mil/crosstalk>. We accept article submissions on software-related
topics at any time, along with Letters to the Editor and BackTalk. We also provide a

link to each monthly theme, giving greater detail on the types of articles we're
looking for at <www.stsc.hill.af.mil/crosstalk/theme.html>.

CALL FOR ARTICLES
If your experience or research has produced information that could be
useful to others, CrossTalk can get the word out. We are specifically
looking for articles on software-related topics to supplement upcoming
theme issues. Below is the submittal schedule for three areas of emphasis
we are looking for:

Please

 follow the Author Guidelines for

at <www.s

tsc.hill.af.mil/crosstalk>. We accept article submissions on software-related

topics at

 any time, along with Letters to the Editor and

link t

o each monthly theme, giving greater detail on the types of articles we're

we are

 l

oo

ki

ng

 for:

If your company developed software
that ran tools capable of propelling big

objects long distances, measured accuracy
in miles, and increased its accuracy to
inches, you might save your customer mil-
lions of dollars. This actually happened
[1]. If your company refined its software
development processes so that your unit
testing department found zero errors in a
three-year period, you might eliminate unit
testing and move those testers into other
types of testing, saving many dollars with
every release. This also happened [2]. If
your customer asked you to speed up your
next software delivery by 50 percent and
guarantee no flaws in the delivered product,
could you do it without incurring any
extra costs or sacrificing other projects?
One company did [3].

You may figure those goals are impos-
sible for your organization to achieve or
you do not have enough money to make it
happen. If so, you are wrong. Right now
open a Web browser, type <www.
sei.cmu.edu>, and hit enter. If your orga-
nization does software development,
search for Capability Maturity Model
Integration for Development (CMMI-
DEV). If you are an acquisition organiza-
tion, search for CMMI-Acquisition
(ACQ). All organizations should check
out People Capability Maturity Model (P-
CMM).

These models are all instantiations of
Total Quality Management (TQM), the
method that turned low-quality Japanese
trinkets into high-quality automobiles,
electronics, cameras, and many other
products [4]. Because these models are
different views of the same paradigm, you
can also use them in other areas. One
company used a predecessor of the
CMMI-DEV and achieved the model’s
highest level of process maturity in soft-
ware development. That company’s hard-
ware people realized the software folks
really had their act together. They got jeal-
ous and sought the software secret. When
they were shown the CMM, they said, “We
could use that if we just change a few of
the terms. Instead of talking about man-
aging software requirements, we would

manage hardware requirements.” Before
long, that entire group was achieving
record low manufacturing defects, record
high profits, record high customer and
employee satisfaction, record low employ-
ee turnover, and many more positive
effects [3].

If the rewards from doing this are so
great, why do so few companies achieve
CMMI Level 5 – the highest level of
process maturity? I contend it is because
they do not execute their continuous
process improvement (CPI) effort proper-
ly. There are many ways to do it right, but
even more ways to do it wrong. If you
would like to help ensure success in your
CPI effort, read this article and get start-
ed. Before long you could very well be
producing (or acquiring) software of
exceptional quality, precisely meeting cus-
tomer requirements, and incurring mini-
mal maintenance costs.

Based on 15 years of CPI experience,
here are some items you might consider
when starting or reinvigorating your CPI
effort. While they are no guarantee that
you will reach the CMMI pinnacle, they
can help you avoid pitfalls that snag many
such efforts. (Throughout this list, we and
our refer to the Nuclear Weapons Effects
Division Process Improvement Team
[PIT]):
• Do not try to iinnssppeecctt in quality. All

too often, people believe they can have
ad-hoc development processes, then
use an inspection process at the end and
effectively remove all defects, yielding
a quality product. It just will not hap-
pen. My experience shows that only a
small portion of defects are actually
removed if the attempt is only at the
end. Inspections in every phase of the
process are good, just do not wait to
the end and then do a lone inspection!
Industry statistics indicate that for
every four errors pulled out, one new
error is injected. Hence, you must iter-
ate many times to approach zero.
Large expense, little return – not a
good business decision.

• Do not look for a quick fix. I have
learned to fear when a senior manager

goes to a conference where process
improvement is discussed. Inevitably
they return with the latest fad and want
to implement it by week’s end. It takes
between two and three years to get
CPI institutionalized. Your processes
did not get screwed up overnight; they
will not get fixed overnight, either.

• Hold people accountable. This is
the biggest key to any CPI effort. If
you create a meager CPI plan complete
with a feedback loop for improve-
ments, then hold people accountable
to following it – you will make great
progress in relatively little time. I have
experienced both sides of this and can
vouch that not holding them account-
able will guarantee failure, and always
holding them accountable is more like-
ly to guarantee success. However, you
cannot hold them accountable for six
months and then give up because it is
not working. Refer to the second point
above.

• Do not aim for a certain level of
improvement. Never state, “We want
to achieve CMMI Level 3 by ___
date.” What matters are the qualities
exhibited, not the score obtained. Your
primary emphasis must be to institu-
tionalize CPI. Once that is accom-
plished, the rest will fall into place. If
your aim is Level 3, once you reach it,
you will not have any objective left and
you will begin backsliding. However, if
you emphasize CPI, once you reach
Level 5, you will be thinking about
what Level 6 (if there was one) would
look like or you will seek other compa-
ny areas that could benefit from your
CPI attitude. Levels are just indicators
of your progress.

• Do not follow the CMMIs in the
order they are written. They are writ-
ten so that one size fits all. As you and I
know, even though one size fits all, it
rarely looks good. You are much better
off finding those areas of the CMMI
currently giving you the most
headaches and work on those first. If
that does not work for you or you have
many headaches, take a new project

Quality Processes Yield Quality Products

Would your company like to save $100,000 per day? Would you like to surge an urgent project’s delivery time by 50 per-
cent and deliver zero errors? Software organizations have done just that. In this article, I list small steps you can take that
will lead your company toward similar results based on my 15 years of process improvement experience.

Thomas D. Neff
MTC Technologies

14 CROSSTALK The Journal of Defense Software Engineering June 2008

Quality Processes Yield Quality Products

and use it to pilot the CMMI. As you
work through that project, write the
necessary standard operating instruc-
tions (SOI)/standard operating proce-
dures (SOPs), as identified by the
CMMI, and test them with that pro-
ject. Once they are acceptable, publish
them as an example of how your orga-
nization does business. Of course,
these are living documents and as you
mature, your processes must evolve
with you.

• PPeerrffeecctt is the enemy of ggoooodd eennoouugghh.
If you are looking to produce perfect
processes, you will never get there.
Aim for the 80 percent solution. While
that might seem pretty low, remember
that each process has a feedback loop
whereby improvements can easily and
frequently be made. I know of no one
who has ever gone to work thinking,
“I want to do worse today than yester-
day.” Most employees want to do a
better job. The problem is that they do
not always know how, but processes
can give them a framework. Their
experience and intuition will help fill in
the details on how to improve.

• Jealousy is a great thing. Do not let
the lack of senior management sup-
port stop you. All you need is any man-
ager to support CPI to get it going.
Once you are making progress, others
will see something is different with
your manager: projects are being pro-
duced on time, on budget, and/or with
greater quality. The other managers
will become jealous and want to
achieve the same success.

• Do not try to end world hunger.
Aim low and reach your target. If you
try to fix your whole company, you will
likely spend most of your time negoti-
ating, selling, and/or compromising. It
is better to fix your little niche and
make others jealous (see above). Allow
them to modify your processes to fit
their needs. They will already have
incentive to ensure they are successful
(jealousy still reigns). If they fail, they
will come back since they will become
jealous over something else you are
doing better than them (and reaping
tangible rewards such as a bigger bud-
get or additional people). They might
even stumble onto a better process
than yours – great! Ask to use it and
make it work for you. Now you have a
strong ally.

• Two heads are better than one.
Create a PIT encompassing each work
unit in your area. As a PIT leader, you
do not have the corner on good ideas.
The more people you include (up to

seven, plus or minus two), the better.
However, you do not want just anyone.
You want people who share your
enthusiasm for process improvement
and who see the big picture. If you
have the wrong team members, it can
be detrimental because you will spend
80 percent of your time educating 20
percent of them.

• Every team needs cheerleaders. If
you document/improve all processes
but no one knows about them, you
have accomplished nothing. Find the
opinion leaders in each work area and
get them involved. If they are not on
the PIT, try to include them on the
occasional work group or have them
write an article for the PIT newsletter.
That newsletter can be another good

cheerleader. It is your first opportunity
to provide training snippets on new
processes as well as keeping everyone
informed of your current CPI status.

• Fail and get over it. As humans we
are imperfect. Do not worry about
failure. The only failure is one where
you learn nothing. If you are unsuc-
cessful and learn from it then it was a
great learning experience, not a failure
because you now know at least one
way not to do it.

• Start with the obvious. The CMMI-
ACQ has a lot of information about
what your acquisition program should

contain. It does not tell you how to do
it but there is plenty of what. Do not
wait until you have the how to get start-
ed. Take the what (i.e., CMMI) and turn
it into a policy statement (SOI). Then,
when it is time to create the how (SOP),
people will know which how to devel-
op. You will have already added some
structure to your process improve-
ment effort.

• Keep focused. When writing an SOI,
do not delve into how people should do
something. You want to focus on what
they are to do and, on occasion, why.
You can even describe a little of who or
when. Once an SOP is created then it is
time to describe how to do the job.
These SOIs/SOPs should not be writ-
ten for a three-year-old, but they also
should not be written for a brain sur-
geon (unless it is an SOP on brain
surgery). You should rarely include any
why material in an SOP. If the worker
does not know why they are doing their
job, they have bigger issues. SOPs
should be written by those already
doing the job.

• We don’t need no stinkin’ tools. Just
as everyone wants instant gratification,
we also want a super tool to make our
jobs easier, thus solving all of our
problems. Come back to reality. That
tool does not exist. I have found that if
you buy a tool to solve your problems,
you are more likely to get a failed CPI
effort – and be poorer to boot.
Because you do not have a repeatable
process, the tool only lets you make
mistakes faster, easier, and with greater
impact. Of course, this frustrates peo-
ple and they will quit using the tool.
They will not realize it was the lack of
process that caused the problems, not
the tool. First, create a process and then
introduce a tool to help people per-
form the process faster, cheaper, and
better.

• Sometimes status quo is good.
Remember, people want to do their
jobs better – they just do not want to
change to do that. The mere act of
documenting your current (probably
flawed) processes is a huge improve-
ment over undocumented processes.
At least now you could repeat the
process twice in a row. It is better to
get the early buy-in than try to perfect
the process too quickly. There will be
plenty of opportunity to improve the
process as people use it.

• Sometimes status quo is bad.
Hopefully you will never hear we do it
this way because it is how we have always
done it. However, someone is thinking

June 2008 www.stsc.hill.af.mil 15

“One company used a
predecessor of the
CMMI-DEV and

achieved the model’s
highest level of process
maturity in software
development.That

company’s hardware
people realized the

software folks had their
act together ...When
they were shown the
CMM, they said, “We
could use that”

Software Quality

16 CROSSTALK The Journal of Defense Software Engineering June 2008

it. My experience is that if people do
not know why they are doing some-
thing, they are also ripe for the sugges-
tion that there might be a better way,
especially if it means less work. Many
of the always done it this way processes
can be reduced in effort by 50 percent
or more. Often, some work products
are used by no one. If a product has
no customer (user), eliminate it. You
will earn many new friends. If there
was a hidden customer, they will even-
tually figure out something changed
and come to you to explain why they
need what you eliminated. Then you
will know why it is needed.

• Keep it short. We keep SOIs to no
more than three pages. Most are one to
one-and-a-half pages, with the shortest
being two paragraphs. SOPs are longer,
but we still try to keep them to about
four pages. If attachments are added,
we do not count those against the four-
page goal. A short document will get
read, but a long one will not. Our plan
is to write 100 short documents instead
of one all-encompassing volume.

• Do not get hung up on training.
Some people feel they need training on
everything. At some level, I agree.
However, it is just as bad to do too
much training as not enough. No one
needs training on our SOIs. Even most
SOPs are written so that anyone suffi-
ciently educated could pick up an SOP
and determine how to perform its
task. Use screen captures, pictures, and
flowcharts – some people like
words,some need pictures. Cater to
both but keep it short, and provide
training as needed or requested.

• A hyperlink is your friend. Ample
hyperlinking avoids redundancy and
inaccuracy. For instance, we have an
SOI describing acronyms and defini-
tions. All acronyms and definitions
used in our SOIs/SOPs are included
here. We then name the definition as a
bookmark and hyperlink upon its first
use in each document. That way we
ensure the proper definition is used
and we do not have to spell it out,
which keeps our documents shorter.

• Procrastination is your enemy.
There is no bad place to start a CPI
effort except to not start at all. I do not
know how many times I have been
asked how to start a CPI effort. I
answer, “It doesn’t matter.” Start
where you feel most comfortable, with
what causes the most headaches, with
what will give the best return on
investment, or you can use any other
criteria. As Nike said, just do it.

• I think I can, I think I can. The Little
Engine That Could ran uphill for a
long time. It was about out of steam
when it crested the hill and things
became easier. So it is with CPI. You
will face an uphill battle for at least six
months – and probably more.
However, at some point (that point will
be different for each organization) you
will crest the hill and gain momentum.
At that point, no one can stop your
CPI effort. It will be institutionalized
and no longer dependent on individu-
als, becoming an integral part of your
organization’s business practices. As
long as you have steam, you must keep
chugging uphill. Set your sights just
over the crest and you will get there.

• This is not three-card monte. Pick
a model, any model. There are many
process models from which to choose
(CMM, CMMI, International Organi-
zation for Standardization [ISO] 9000,
TQM, Lean, Six Sigma, Lean Six
Sigma, etc.). Which should you use?
When you are getting started, it does
not matter. Just pick one and go. Any
improvement is better than none. You
may even choose bits and pieces of
several models. Having said that, I
believe the CMM and CMMI models
are the most comprehensive and take
you farther than the others. For
instance, ISO 9000 takes you to about
a CMMI Level 2. The Lean and Six
Sigma models require you to docu-
ment your process first, so you can
determine just how much it has
improved. Since most organizations
just starting CPI do not have docu-
mented processes, it seems the
CMM/CMMI might be best for start-
ing because they provide guidance on
what should be in your key processes.
As your processes mature, you will
likely incorporate other models into
your CPI effort to speed your progress
or improve the quality. Use whatever
works for you.

• Do not reinvent the wheel. Reuse is
your friend. Build on others’ successes.
Learn from them. Never embrace not
invented here syndrome. The Software
Engineering Institute already devel-
oped all the tools you need to start
making significant leaps in the quality
of your processes. Their CMM and
CMMI models describe every charac-
teristic your organization should
exhibit at various levels of process
maturity. Use the models – they work.
They will give you quality processes
leading to quality products.
From what I have seen, most failed

CPI efforts could not figure out where to
begin, lost steam before starting, could
not get any management support (usually
tried at too high a level), focused too
much on tools versus processes, could not
find a quick fix and quit, or tried to solve
world hunger and gave up.

Based on my 15 years in process
improvement, I suspect that if you follow
these suggestions, sticking with it at least
two years, you will be successful in your
CPI effort.

If you have CPI lessons learned, I
would enjoy hearing them.u

References
1. Yamamura, George, and Gary B.

Wigle. “SEI CMM Level 5: For the
Right Reasons,” CrossTalk Aug.
1997 <www.stsc.hill.af.mil/crosstalk/
frames.asp?uri=1997/08/seicmm5.
asp>.

2. Billings, C., J. Clifton, B. Kolkhorst, E.
Lee, and W.B. Wingert. “Journey to a
Mature Software Process.” IBM
Systems Journal. Vol. 33, No. 1. 1994:
pp. 46-61.

3. Vu, John D. “Presentation to CIO’s
Office.” National Reconnaissance
Office. Chantilly, VA., Mar 2001.

4. Deming, W. Edwards. Out of the
Crisis. MIT Press. 1986.

About the Author

Thomas D. Neff, Lt
Col, U.S. Air Force
(Ret.) spent most of his
Air Force career in soft-
ware development and
project management.

Currently, he works for MTC Technolo-
gies supporting the Defense Threat
Reduction Agency’s Nuclear Weapons
Effects Division as a process manager,
and uses the CMMI-ACQ and P-CMM
as guides for that effort. Neff is a fre-
quent speaker on process improvement
at information technology conferences.
He has a Master of Computer Science
from Texas A&M, which helped steer
him toward process improvement.

DTRA/RD-NTE
8725 JJ Kingman RD
Ft Belvoir, VA 22060-6201
Phone: (703) 767-4106
Fax: (703) 767-9844
E-mail: thomas.neff_contractor

@dtra.mil

Departments

June 2008 www.stsc.hill.af.mil 17

UrgUrgent Reader Request!ent Reader Request!

CrossTalk has been there for you for almost twenty years, and now
we are asking that you be there for CrossTalk. As a free publication,
your comments are the lifeblood of our existence. Has the information

provided in our publication ever helped you save time or money?
Have you benefitted in other ways? If so, we want to hear about it.

Our goal has always been to inform and educate you — our readers — on
software engineering best practices, processes, policies and other technologies.

If we have succeeded in this goal, let us know “how, where, when, and why.”
Your comments will help CrossTalk continue to bring you the news

and information you’ve come to expect.

SShhaarree YYoouurr RReessuullttss!!

Have we helped? How?

Send your stories of success to crosstalk.publisher@hill.af.mil, or go to
www.stsc.hill.af.mil/crosstalk.

We will feature your comments in our 20th anniversary issue this August.
Thank You!

... Between CrossTalk and our

tech advisor, we shipped

580K + SLOC with more

functionality than originally planned.

Articles ... and metrics

helped me save $33.5 million

on government programs.Ò

Ó

Quoting it all the time to

substantiate project plans

and estimates.

Static analysis has commonly been
known as a technique for finding

violations of superficial stylistic pro-
gramming rules, and for alerting pro-
grammers to typing discrepancies in
type-unsafe languages. The latest static-
analysis tools go far beyond this, and
are capable of finding serious errors in
programs such as null-pointer de-refer-
ences, buffer overruns, race conditions,
resource leaks, and other errors. They
can do so without requiring additional
input from the users, and without
requiring changes to development
processes or practices. Actionable
results are produced quickly with a low
level of false positives. These static-
analysis tools are not a silver bullet,
however, because they can never prove
that a program is completely free of
flaws. The following is a description of
how static-analysis tools work, followed
by a discussion of how they can be used
to complement traditional testing.

How Static Analysis Finds
Flaws
The first thing a static analysis tool
must do is identify the code to be ana-
lyzed. The source files that must be
compiled to create a program may be
scattered across many directories, and
may be mixed in with other source code
that is not used for that program. Static
analysis tools operate much like compil-
ers so they must be able to identify
exactly which source files contribute
and should ignore those that do not.
The scripts or build system that builds
the executable obviously know which
files to use, so the best static analysis
tools can extract this information by
reading those scripts directly or by
observing the build system in action.
This way the tool gets to see not only
the source files but also which compiler
is being used and any command-line
flags that were passed in. The parser
that the static analysis tool uses must

interpret the source code in the same
way that the real compiler does. It does
this by modeling how the real compile
works as closely as possible. The com-
mand-line flags are an essential input to
that.

As the build system progresses, each
invocation of the compiler is used to
create a whole program model of the

program. This model consists of a set
of abstract representations of the
source, and is similar to what a compil-
er might generate as an intermediate
representation. It includes the control-
flow graph, the call graph, and infor-
mation about symbols such as variables
and type names.

Once the model has been created,
the analysis performs a symbolic execu-
tion on it. This can be thought of as a
simulation of a real execution. Whereas
a real execution would use concrete val-
ues in variables, the symbolic execution
uses abstract values instead. This execu-
tion explores paths and, as it proceeds,
if any anomalies are observed, they are
reported as warnings. This approach is
based on abstract interpretation [1] and
model checking [2].

The analysis is path-sensitive, which
means that it can compute properties of

individual paths through the program.
This is important because it means that
when a warning is reported, the tool
can tell the user the path along which
execution must proceed in order for the
flaw to be manifest. Tools also usually
indicate the points along that path
where relevant transformations occur
and conditions on the data values that
must hold. These help users understand
the result and how to correct the prob-
lem should it be confirmed.

Once a set of warnings have been
issued, these tools offer features to help
the user manage the results, including
allowing the user to manually label indi-
vidual warnings. Warnings that corre-
spond to real flaws can be labeled as
true positives. Warnings that are false
alarms can be labeled as false positives.
Warnings that are technically true posi-
tives but which are benign can be
labeled as don’t care. Most tools offer
features that allow the user to suppress
reporting of such warnings in subse-
quent analyses.

Limitations of Static
Analysis
In order to understand the limitations
of the techniques that these tools use, it
is important to understand the metrics
used to assess their performance. The
first metric, recall, is a measure of the
ability of the tool to find real problems.
Recall is measured as the number of
flaws found divided by all flaws present.
The second metric is precision, which
measures the ability of the tool to
exclude false positives. It is the ratio of
true positives to all warnings reported.
The third metric is performance.
Although not formally defined, this is a
measure of the computing resources
needed to generate the results.

These three metrics usually operate
in opposition to each other. It is easy to
create a tool that has perfect precision
and excellent performance – one that

The Use and Limitations of Static-Analysis
Tools to Improve Software Quality

Dr. Paul Anderson
GrammaTech, Inc.

Advanced static-analysis tools have been found to be effective at finding defects that jeopardize system safety and security. This
article describes how these work and outlines their limitations. They are best used in combination with traditional dynamic
testing techniques, and can even reduce the cost to create and manage test cases for stringent run-time coverage.

Software Engineering Technology

18 CROSSTALK The Journal of Defense Software Engineering June 2008

“In order to understand
the limitations of

the techniques that
these tools use, it is

important to understand
the metrics used
to assess their
performance.”

The Use and Limitations of Static-Analysis Tools to Improve Software Quality

June 2008 www.stsc.hill.af.mil 19

reports no lines contain flaws will satis-
fy because it reports no false positives.
Similarly, it is easy to create a tool with
perfect recall and excellent perfor-
mance – one that reports that all lines
have errors will answer because it
reports no false negatives. Clearly, how-
ever, neither tool is of any use whatso-
ever.

Finally, it is at least theoretically pos-
sible to write an analyzer that would
have excellent precision and excellent
recall given enough time and access to
enough processing power. Whether
such a tool would be as useless as the
previous two example tools is debatable
and would depend on just how much
time it would take. What is clear is that
no such tools currently exist and to cre-
ate them would be very difficult.

As a result, all tools occupy a middle
ground around a sweet spot that devel-
opers find most useful. Developers
expect analyses to complete in time
roughly proportional to the size of
their code base and within hours rather
than days. Tools that take longer simply
do not get used because they take too
long. Low precision means more false
positives, which has an insidious effect
on users. As precision goes down, even
true positive warnings are more likely to
be erroneously judged as false positives
because the users lose trust in the tool.

For most classes of flaws, precision
less than 80 percent is unacceptable.
For more serious flaws, however, preci-
sion as low as five percent may be
acceptable if the code is to be deployed
in very risky environments. It is diffi-
cult to quantify acceptable values for
recall as it is impossible to measure
accurately in practice, but clearly users
would not bother using these tools at all
if they did not find serious flaws that
escape detection by other means.

Each of these constraints intro-
duces its own set of limitations, howev-
er they are all interrelated. The reasons
that lead to low recall are explained in
more detail in the following sections.

Path Limitations
As mentioned earlier, these analyses are
path sensitive. This improves both
recall and precision and is probably the
key aspect of these products that makes
them most useful. A full exploration of
all paths through the program would be
very expensive. If there are n branch
points in a procedure, and there are no
loops in that procedure, then the num-
ber of intraprocedural paths through
that procedure can be as many as 2n. In

practice, this is fewer because some
branches are correlated, but the asymp-
totic behavior remains. If procedure
calls and returns are taken into account,
the number of paths is doubly exponen-
tial, and if loops are taken into account
then the number of paths is unbound-
ed. Clearly it is not possible for a tool to
explore all of these paths. The tools
restrict their exploration in two ways.
First, loops are handled by exploring a
small fixed number of iterations: often,
the first time around the loop is singled
out as special, and all other iterations
are considered en masse and represent-
ed by an approximation. Second, not all
paths are explored. It is typical for an
analysis to place an upper bound on the
number of paths explored in a particu-

lar procedure or on the amount of time
available, and a selection of those
remaining paths are explored.

If asynchronous paths can occur
(such as those caused by interrupts or
exceptions) or if the program uses con-
currency, then the number of possible
paths to consider increases further.
Many tools simply ignore these possi-
bilities. Finally, most tools also ignore
recursive function calls, and function
calls that are made through function
pointers (or make very coarse approxi-
mations) as considering these also con-
tributes to poor performance and poor
precision.

Abstract Domain
As previously mentioned, these tools
work by exploring paths and looking
for anomalies in the abstract state of

the program. The appeal of the sym-
bolic execution is that each abstract
state represents potentially many possi-
ble concrete states. For example, given
an 8-bit variable x, there are 28 possible
concrete values: 0, 1, …, 255. The sym-
bolic execution, however, might repre-
sent the value as two abstract states:
x=0, and x>0. So where a concrete exe-
cution has 256 states to explore, the
symbolic execution has only two.

As such, the expressivity of this
abstract domain is an important factor
that determines the effectiveness of the
analysis. Again, there is a trade-off
here: better precision and recall can be
achieved by more sophisticated abstract
domains, but more resources will then
be required to complete an analysis.
Values in the abstract domain are equa-
tions that represent constraints on val-
ues, i.e., x=0, or y>10. As the analysis
progresses, a constraint solver is used
to combine and simplify these equa-
tions. A key characteristic of these
abstract domains is that there is a spe-
cial value, usually named bottom, which
indicates that the analysis knows no
useful information about the actual
value. Bottom is the abstract value that
corresponds to all possible concrete
values. Reaching bottom is impossible
to avoid for any non-trivial abstraction
in general as this would require solving
the halting problem. Once bottom is
reached, the analysis has a choice of
treating it as a potentially dangerous
value, which would increase recall, or as
a probably safe value, which would
increase precision. Most tools opt for
the latter as the former also has the
effect of decreasing precision enor-
mously.

If there are program constructs that
step outside the bounds of what can be
expressed in the abstract domain, this
causes the analysis to lose track of vari-
ables and their relationships. For exam-
ple, an abstract domain that allows the
expression of affine relationships
between no more than two variables
admits expressions such as x=2y.
However, something such as x=y+z is
out of bounds because it involves three
variables and the analysis would be
forced to conclude x=bottom instead.

The consequence of this is the
abstract domain that a tool uses deter-
mines a great deal about the kind of
flaws that it is capable of detecting. For
example, if the tool uses an abstract
domain of affine relations between two
variables, then it may fail to find flaws
that depend on three variables.

“If asynchronous paths
can occur (such as those
caused by interrupts or

exceptions) or if the
program uses concurrency,

then the number of
possible paths to
consider increases
further. Many tools
simply ignore the

possibilities.”

Software Engineering Technology

Similarly, most tools choose a domain
that allows them to reason about the
values of integers and addresses but
not floating-point values, so they will
fail to find flaws in floating-point arith-
metic (such as divide by zero).

Missing Source Code
If the source code to a part of a pro-
gram is not available, as is almost always
the case because of operating system
and third-party libraries, or if the code
is written in a language not recognized
by the analysis tool, then the analysis
must make some assumptions about
how that missing code operates. Take,
for example, a call to a function in a
third-party library that takes a single
pointer-typed parameter and returns an
integer. In the absence of any other
information, most analyses will assume
that the function does nothing and
returns an unknown value. This clearly
is not realistic, but it is not practical to
do better in general. The function may
de-reference its pointer parameter, it
may read or write any global variable
that is in scope, it may return an integer
from a particular range, or it may even
abort execution. If the analysis knew
this, it would have better precision and

recall but it is forced to make the sim-
ple assumption unless told otherwise.

There are two approaches around
this. First, if source is not available but
object code is, then the analysis could
be extended into the object code. This
is a highly attractive solution but no
products are available yet. The techno-
logical basis for such a tool exists, how-
ever [3], and it is expected that products
capable of analyzing object code as well
as C/C++ will appear.

A second approach to the problem
is to specify stubs, or models, that sum-
marize key aspects of the missing
source code. The popular analysis tools
provide models for commonly used
libraries such as the C library. These
models only have to approximate the
behavior of the code. Users can, of
course, write these themselves for their
own libraries but it can be a tricky and
time-consuming effort.

Out of Scope
There are, of course, entire classes of
flaws that static analysis is unlikely ever
to be able to detect. Static analysis excels
at finding places where the fundamental
rules of the language are being violated
such as buffer overruns, or where com-

monly used libraries are being used
incorrectly, or where there are inconsis-
tencies in the code that indicate misun-
derstanding. If the code does the wrong
thing for some other reason, but does
not then terminate abnormally, then sta-
tic analysis is unlikely to be able to help
because it is unable to divine the intent
of the author. For example, if a function
is intended to sort in ascending order,
but perfectly sorts in descending order
instead, then static analysis will not help
much. This kind of functionality testing
is what traditional dynamic testing is
good for.

Static Analysis and Testing
Static analysis should never be seriously
considered as a replacement for tradi-
tional dynamic testing activities. Rather,
it should be thought of as a way of
amplifying the software assurance effort.
The cheapest bug to find is the one that
gets found earliest, and as static analysis
can be used very early in the develop-
ment cycle, its use can reduce the cost of
development and liberate resources for
use elsewhere. This is the traditional
view of how static analysis can reduce
testing costs. However, there is a second
way in which the use of static analysis
can reduce the cost of testing: it makes
it easier to achieve full coverage.

One measure of the effectiveness of a
test suite is how well it exercises or covers
the code being tested. There are many dif-
ferent kinds of coverage. Statement cover-
age is the most common, but for riskier
code more stringent forms are often
required. Decision coverage is a superset
of statement coverage, and requires that all
branches in the control flow of the pro-
gram are taken. In DO-178B, a develop-
ment standard for flight software [4], the
riskiest code is required to be tested with
100 percent modified condition/decision
coverage (MCDC). This means that a test
suite must be chosen such that all sub-
expressions in all conditionals are evaluat-
ed to both true and false. Table 1 illustrates
how many different test cases are needed
for each to achieve coverage. For the code
sample on the left, the values required of
the boolean variables a, b, and c to achieve
each form of coverage is shown on the
right.

Achieving full coverage, even for
statement coverage, can be very time
consuming. The engineer creating the
test case must figure out what inputs
must be given to drive the program to
each statement. What can make it very
frustrating is if it is fundamentally
impossible to do so, but this may not be

20 CROSSTALK The Journal of Defense Software Engineering June 2008

.

Coverage a b c

Statement T - -
Decision T - -
 F F F
MCDC T - -
 F T -
 F F T

if (a || b || c)
 x = 0;

 F F F

Table 1: Test Cases Needed for Statement, Decision, and MCDC Coverage

Never True:
($temp2 & 16) != 0

8

9
10
11
12

if (!flags & MASK) /*Redundant Condition */

{
 error(”Cannot sign packet”);
 return;
}

Figure 1: A Redundant Condition Warning

Always True:
rest > 1

5
6
7
8
9

10
11
12

13
14
15

c:\CodeSonar\ex2.c
Enter foo
 void foo (int rest, int length)
{
 if (rest <=1)
 buf[pos-1] = ‘>’;
 else if (rest == 2)
 buf[pos++] = ‘>’;
 else if (length > rest)
 if (--rest > 1) { /* Redundant Condition (ID: 1) */

 if (rest >= 2)
 rest --;
 }

Figure 2: A Second Redundant Condition Warning

The Use and Limitations of Static-Analysis Tools to Improve Software Quality

apparent simply by looking at the code.
If the program contains unreachable
code, then statement coverage is impos-
sible. If it contains redundant conditions
(those that are either always true or
always false), then MCDC is impossible.
Developers can spend hours trying to
refine a test case before it is evident that
their efforts are pointless.

If the unreachable code or redun-
dant conditions can be brought to the
attention of the tester early, then they do
not need to waste time in a futile attempt
to achieve the impossible. This is what
static analysis can do easily and efficient-
ly. Figure 1 shows an example of a
report from CodeSonar1 illustrating a
redundant condition in a sample of code
taken from an open-source application.
The variable rest, an unaliased integer,
must be at least three by line 12. The
decrement on that line means it is at
least two, so the condition will always be
true. The following line is also redun-
dant and shown in a different report.

In this example, all the components
of the code relevant to the redundancy
are in close proximity so it is likely that a
reviewer would have spotted this during
a manual review. It would not have been
so easy to spot if the code were more
complex. If the code had spanned sev-
eral pages, or if relevant parts had been
embedded in function calls or macro
invocations, then it would have been dif-
ficult to spot. Static analysis is not sensi-
tive to superficial aspects of the code
such as its layout, so it would not have
been confused.

These kinds of redundancies corre-
late well with genuine flaws as well; for
example, consider the example in Figure
2. This was distilled from a genuine flaw
found in a widely used open-source pro-
gram, and is a redundant condition
warning where the tool has deduced that
the true branch of the conditional will
never be taken. The reason why it con-
cluded so is shown to the left. The first
operand to the bitwise AND (the & sym-
bol) is either zero or one as this is the
range of the negation operator (the !
symbol). This is what is represented by
$temp2. The constant MASK has the
value 16. The result of the AND expres-
sions 1&16 and 0&16 are both zero, so
the conditional expression is guaranteed
to be zero.

The programmer who wrote this
code probably misunderstood the prece-
dence of the operators in the condition-
al expression and assumed that the
innermost operator had higher prece-
dence. If so, then a correction would be

to place parentheses around the inner
expression. This is a potentially danger-
ous flaw as it means that the error con-
dition would not be detected, which
could result in unpredictable behavior.

When to Use Static Analysis
Tools
The best time to use advanced static
analysis tools is early in the development
cycle. In Holzmann’s 10 rules for safety-
critical development [5], the most far-
reaching rule states that these tools
should be used throughout the develop-
ment process. As well as reducing the
cost of development by finding flaws
earlier and reducing testing effort, early
adoption exerts a force on programmers
to write code that is more amenable to
analysis, thereby increasing the probabil-
ity that the tool will find errors. Care
should be taken, however, to avoid a risk
compensation phenomenon, where pro-
grammers use less care because they
assume that the static analysis tool will
find their mistakes.

If adopted late in the development
cycle, static analysis may issue a large
number of warnings. The best value is
gained if these are all dealt with, either
by fixing the code, marking them as false
positives, or labeling them as don’t care if
they are believed to be benign. However,
if scheduling time to sift through these
is not feasible, then an alternative strate-
gy is to operate in a differential mode,
where programmers are only told about
new warnings. This way they are alerted
to flaws in code that they are working
with while it remains fresh in their
minds.

Conclusion
Advanced static analysis tools offer
much to help improve the quality of
software. The best tools are easy to inte-
grate into the development cycle, and
can yield high-quality results quickly
without requiring additional engineering
effort. They can be used not just for
finding flaws, but also to guide testing
activities. They use sophisticated sym-
bolic execution techniques for which
engineering trade-offs have been made
so that they can generate useful results
in a reasonable time. As such, they
inevitably have both false positives and
false negatives, and so should never be
considered a replacement for traditional
testing techniques.u

References
1. Cousot, P., and R. Cousot. “Abstract

Interpretation: A Unified Lattice
Model for Static Analysis of Programs
by Construction or Approximation of
Fixpoints.” ACM Symposium on
Principles of Programming Lan-
guages. Los Angeles, CA., 1977.

2. Clarke, E.M., O. Grumberg, and D.A.
Peled. Model Checking. MIT Press:
Cambridge, MA: 1999.

3. Balakrishnan, G., R. Gruian, T. Reps,
and T. Teitelbaum. “CodeSurfer/x86 –
A Platform for Analyzing x86
Executables.” International Confer-
ence on Compiler Construction. 2005.

4. RTCA/DO-178B. “Software Con-
siderations in Airborne Systems and
Equipment Certification.” 1992.

5. Holzmann, G.J. “The Power of 10:
Rules for Developing Safety-Critical
Code.” IEEE Computer 2006.

Note
1. GrammaTech’s static analysis tool.

June 2008 www.stsc.hill.af.mil 21

About the Author

Paul Anderson, Ph.D.,
is vice president of engi-
neering at GrammaTech,
a spin-off of Cornell
University that special-
izes in static analysis,

where he manages GrammaTech’s engi-
neering team and is the architect of the
company’s static analysis tools. He has
worked in the software industry for 16
years, with most of his experience
focused on developing static analysis,
automated testing, and program trans-
formation tools. A significant portion of
Anderson’s work has involved applying
program analysis to improve security.
His research on static analysis tools and
techniques has been reported in numer-
ous articles, journal publications, book
chapters, and international conferences.
Anderson has a B.Sc. from Kings
College, University of London, and his
doctorate in computer science from City
University, London.

GrammaTech, Inc.
317 N Aurora ST
Ithaca, NY 14850
Phone: (607) 273-7340
Fax: (607) 273-8752
E-mail: paul@grammatech.com

Many testers are familiar with the most
basic form of combinatorial testing

– all pairs or pairwise testing, in which all
possible pairs of parameter values are cov-
ered by at least one test [1, 2]. Pairwise
testing uses specially constructed test sets
that guarantee testing every parameter
value interacting with every other parame-
ter value at least once. For example, sup-
pose we had an application that is intend-
ed to run on a variety of platforms com-
prised of five components: an operating
system (Windows XP, Apple OS X, Red
Hat Linux), a browser (Internet Explorer,
Firefox), protocol stack (IPv4, IPv6), a
processor (Intel, AMD), and a database
(MySQL, Sybase, Oracle), a total of 3 x 2
x 2 x 2 x 2 = 48 possible platforms. With
only 10 tests, as shown in Figure 1, it is
possible to test every component interact-
ing with every other component at least
once, i.e., all possible pairs of platform
components. The effectiveness of pair-
wise testing is based on the observation
that software faults often involve interac-
tions between parameters. While some
bugs can be detected with a single para-
meter value, such as a divide-by-zero
error, the toughest bugs often can only be
detected when multiple conditions are
true simultaneously. For example, a router

may be observed to fail only for the User
Datagram Protocol (UDP) when packet
rate exceeds 1.3 million packets per sec-
ond – a 2-way interaction between proto-
col type and packet rate. An even more
difficult bug might be one which is detect-
ed only for UDP when packet volume
exceeds 1.3 million packets per second
and packet chaining is used – a 3-way
interaction between protocol type, packet
rate, and chaining option.

Unfortunately, only a handful of tools
can generate more complex combinations,
such as 3-way, 4-way, or more (we refer to
the number of variables in combinations
as the combinatorial interaction strength, or
simply, interaction strength, e.g., a 4-way
combination has 4 variables and thus its
interaction strength is 4). The few tools
that do generate tests with interaction
strengths higher than 2-way may require
several days to generate tests [3] because
the generation process is mathematically
complex. Pairwise testing, i.e. testing 2-
way combinations, has come to be accept-
ed as the standard approach to combina-
torial testing because it is computationally
tractable and can effectively detect many
faults. For example, pairwise testing could
detect 70 percent to more than 90 percent
of software faults for the applications

studied in [4].
But if pairwise testing can detect 90

percent of bugs, what interaction strength
is needed to detect 100 percent?
Surprisingly, we found no evidence that
this question had been studied when the
National Institute of Standards and
Technology (NIST) began investigating
software faults in 1996. Results showed
that across a variety of domains, all fail-
ures could be triggered by a maximum of
4-way to 6-way interactions [5]. As shown
in Figure 2, the detection rate increases
rapidly with interaction strength. With the
NASA application, for example, 67 per-
cent of the failures were triggered by only
a single parameter value, 93 percent by 2-
way combinations, and 98 percent by 3-
way combinations. The detection rate
curves for the other applications are simi-
lar, reaching 100 percent detection with 4-
way to 6-way interactions. That is, six or
fewer variables were involved in all failures
for the applications studied, so 6-way test-
ing could, in theory, detect all of the fail-
ures. While not conclusive, these results
suggest that combinatorial testing that
exercises high strength interaction combi-
nations can be an effective approach to
high-integrity software assurance.

Applying combinatorial testing to real-
world software presents a number of chal-
lenges. For one of the best algorithms,
the number of tests needed for combina-
torial coverage of n parameters with v val-
ues each is proportional to v t log n, where
t is the interaction strength [3]. Unit test-
ing of a small module with 12 parameters
required only a few dozen tests for 2-way
combinations, but approximately 12,000
for 6-way combinations [6]. But a large
number of test cases will not be a barrier
if they can be produced with little human
intervention, thus reducing cost. To apply
combinatorial testing, it is necessary to
find a set of test inputs that covers all t-
way combinations of parameter values,
and to match up each set of inputs with
the expected output for these input values.

Automated Combinatorial Test Methods –
Beyond Pairwise Testing

Pairwise testing has become a popular approach to software quality assurance because it often provides effective error detection
at low cost. However, pairwise (2-way) coverage is not sufficient for assurance of mission-critical software. Combinatorial
testing beyond pairwise is rarely used because good algorithms have not been available for complex combinations such as 3-
way, 4-way, or more. In addition, significantly more tests are required for combinations beyond pairwise testing, and testers
must determine expected results for each set of inputs. This article introduces new tools for automating the production of com-
plete test cases covering up to 6-way combinations.

Dr. Yu Lei
University of Texas, Arlington

22 CROSSTALK The Journal of Defense Software Engineering June 2008

D. Richard Kuhn and Dr. Raghu Kacker
National Institute of Standards and Technology

Test OS Browser Protocol CPU DBMS

1 XP IE IPv4 Intel MySQL

2 XP Firefox IPv6 AMD Sybase

3 XP IE IPv6 Intel Oracle

4 OS X Firefox IPv4 AMD MySQL

5 OS X IE IPv4 Intel Sybase

6 OS X Firefox IPv4 Intel Oracle

7 RHL IE IPv6 AMD MySQL

8 RHL Firefox IPv4 Intel Sybase

9 RHL Firefox IPv4 AMD Oracle

10 OS X Firefox IPv6 AMD Oracle

A B C D E F G H I J

0
1
1
1
1
0
0
1
0
0
0
1
0

0
1
1
0
0
1
0
1
0
0
1
0
1

0
1
1
1
0
1
1
0
0
1
0
0
0

0
1
0
1
0
0
0
1
1
1
1
0
0

0
1
1
0
1
0
1
0
1
0
1
0
0

0
1
0
1
1
1
0
0
1
0
0
0
1

0
1
0
0
1
0
1
1
0
1
0
0
1

0
1
0
1
0
0
1
0
0
0
1
1
1

0
1
0
0
0
1
1
1
1
0
0
1
0

0
1
1
0
0
0
0
0
1
1
0
1
1

100

90

80

70

60

50

40

30

20

10

0
1 2 3 4 5 6

Interactions

C
u

m
u

la
ti

ve
 P

er
ce

n
t

Medical devices

Browser

Server

NASA-distributed database

Figure 1: Pairwise Test Configurations

Automated Combinatorial Test Methods – Beyond Pairwise Testing

June 2008 www.stsc.hill.af.mil 23

These are both difficult problems, but
they can now be solved with new algo-
rithms on currently available hardware.
We explain these two steps followed by a
small but complete illustrative example.

Computing T-Way
Combinations of Input Values
Using FireEye
The first step in combinatorial testing is to
find a set of tests that will cover all t-way
combinations of parameter values for the
desired combinatorial interaction strength t.
This collection of tests is known as a covering
array. The covering array specifies test data
where each row of the array can be regard-
ed as a set of parameter values for an indi-
vidual test. Collectively, the rows of the
array cover all t-way combinations of para-
meter values. An example is given in Figure
3, which shows a 3-way covering array for
10 variables with two values each. The inter-
esting property of this array is that any three
columns contain all eight possible values for
three binary variables. For example, taking
columns F, G, and H, we can see that all
eight possible 3-way combinations (000,
001, 010, 011, 100, 101, 110, 111) occur
somewhere in the rows of the three
columns. In fact, this is true for any three
columns. Collectively, therefore, this set of
tests will exercise all 3-way combinations of
input values in only 13 tests, as compared
with 1,024 for exhaustive coverage. Similar
arrays can be generated to cover up to all 6-
way combinations. A non-commercial
research tool called FireEye [3], developed
by NIST and the University of Texas at
Arlington1, makes this possible with much
greater efficiency than previous tools. For
example, a commercial tool required 5,400
seconds to produce a less-optimal test set
than FireEye generated in 4.2 seconds.

Matching Combinatorial Inputs
With Expected Outputs Using
Nu Symbolic Model Verifier
(SMV)
The second step in combinatorial test devel-
opment is to determine what output should
be produced by the system under test for
each set of input parameter values, often
referred to as the oracle problem in testing. The
conventional approach to this problem is
human intervention to design tests and
assign expected results or, in some cases, to
use a reference implementation that is known to
be correct (for example, in checking confor-
mance of various vendor products to a pro-
tocol standard). Because combinatorial test-
ing can require a large number of tests, an
automated method is needed for determin-

ing the expected results for each set of input
data. To solve this problem, we use the
open-source NuSMV model checker [7] (an
enhanced version of the well-known SMV
model checker [7]). Conceptually, the model
checker can be viewed as exploring all states
of a system model to determine if a prop-
erty claimed in a specification statement is
true. What makes a model checker particu-
larly valuable is that if the claim is false, the
model checker not only reports this, but also
provides a counterexample showing how the
claim can be shown false. As will be seen in
the illustrative example, this gives us the
ability to match every set of input test data
with the result that the system should pro-
duce for that input data. Figure 4 outlines
the process.

The model checker thus automates the
work that normally must be done by a
human tester – determining what the cor-
rect output should be for each set of input
data. Other approaches to determining the
correct output for each test can also be used.

For example, in some cases we can run a
model checker in simulation mode, produc-
ing expected results directly rather than
through a counterexample, but the
approach illustrated in this article is more
general, and can be applied to non-deter-
ministic systems or used with mutation-
based methods in addition to combinatorial
testing [8]. The method chosen for resolving
the oracle problem depends on the problem
at hand, but model checking can be effective
in testing protocols, access control, or other
applications where there is a state machine,
unified modeling language state chart, or
other formal model available.

Illustrative Example
Here we present a small example of an
access control system. The rules of the sys-
tem are a simplified multi-level security sys-
tem, followed by a step-by-step construc-
tion of tests using an automated process.
Each subject (user) has a clearance level u_l,
and each file has a classification level f_l.

Test OS Browser Protocol CPU DBMS

1 XP IE IPv4 Intel MySQL

2 XP Firefox IPv6 AMD Sybase

3 XP IE IPv6 Intel Oracle

4 OS X Firefox IPv4 AMD MySQL

5 OS X IE IPv4 Intel Sybase

6 OS X Firefox IPv4 Intel Oracle

7 RHL IE IPv6 AMD MySQL

8 RHL Firefox IPv4 Intel Sybase

9 RHL Firefox IPv4 AMD Oracle

10 OS X Firefox IPv6 AMD Oracle

A B C D E F G H I J

0
1
1
1
1
0
0
1
0
0
0
1
0

0
1
1
0
0
1
0
1
0
0
1
0
1

0
1
1
1
0
1
1
0
0
1
0
0
0

0
1
0
1
0
0
0
1
1
1
1
0
0

0
1
1
0
1
0
1
0
1
0
1
0
0

0
1
0
1
1
1
0
0
1
0
0
0
1

0
1
0
0
1
0
1
1
0
1
0
0
1

0
1
0
1
0
0
1
0
0
0
1
1
1

0
1
0
0
0
1
1
1
1
0
0
1
0

0
1
1
0
0
0
0
0
1
1
0
1
1

100

90

80

70

60

50

40

30

20

10

0
1 2 3 4 5 6

Interactions

C
u

m
u

la
ti

v
e

 P
e

rc
e

n
t

Medical devices

Browser

Server

NASA-distributed database

Figure 2: Error Detection Rates for Interaction Strengths 1 to 6

Test OS Browser Protocol CPU DBMS

1 XP IE IPv4 Intel MySQL

2 XP Firefox IPv6 AMD Sybase

3 XP IE IPv6 Intel Oracle

4 OS X Firefox IPv4 AMD MySQL

5 OS X IE IPv4 Intel Sybase

6 OS X Firefox IPv4 Intel Oracle

7 RHL IE IPv6 AMD MySQL

8 RHL Firefox IPv4 Intel Sybase

9 RHL Firefox IPv4 AMD Oracle

10 OS X Firefox IPv6 AMD Oracle

A B C D E F G H I J

0
1
1
1
1
0
0
1
0
0
0
1
0

0
1
1
0
0
1
0
1
0
0
1
0
1

0
1
1
1
0
1
1
0
0
1
0
0
0

0
1
0
1
0
0
0
1
1
1
1
0
0

0
1
1
0
1
0
1
0
1
0
1
0
0

0
1
0
1
1
1
0
0
1
0
0
0
1

0
1
0
0
1
0
1
1
0
1
0
0
1

0
1
0
1
0
0
1
0
0
0
1
1
1

0
1
0
0
0
1
1
1
1
0
0
1
0

0
1
1
0
0
0
0
0
1
1
0
1
1

100

90

80

70

60

50

40

30

20

10

0
1 2 3 4 5 6

Interactions

C
u

m
u

la
ti

ve
 P

er
ce

n
t

Medical devices

Browser

Server

NASA-distributed database

Figure 3: 3-way Covering Array for 10 Parameters With Two Values Each

Software Engineering Technology

Levels are given as 0, 1, or 2, which could
represent levels such as Confidential, Secret,
and Top Secret. A user u can read a file f if
u_l ≥ f_l (the no read up rule), or write to a
file if f_l ≥ u_l (the no write down rule).

Thus, a pseudo-code representation of
the access control policy is:

if u_l >= f_l & act = rd then
GRANT;

else if f_l >= u_l & act = wr
then GRANT; else DENY;

Tests produced will check that these rules
are correctly implemented in a system.

System Model
This system is easily modeled in the lan-
guage of the NuSMV model checker as a
simple two-state finite state machine. Other
tools could be used, but we illustrate the test
production procedure using NuSMV
because it is among the most widely used
model checkers and is freely available. Our
approach is to model the system as a simple
state machine, then use NuSMV to evaluate
the model and post-process the results into
complete test cases.

Figure 5 shows the system model
defined in SMV. The START state initial-
izes the system (line 8), with the rule noted
previously used to evaluate access as either
GRANT or DENY (lines 9-13). For exam-
ple, line 10 represents the first line of the
pseudo-code example: in the current state,
(always START for this simple model), if
u_l ≥ f_l then the next state is GRANT.
Each line of the case statement is exam-
ined sequentially, as in a conventional pro-
gramming language. Line 12 implements
the else DENY rule, since the predicate
1 is always true. SPEC clauses given at the
end of the model define statements that
are to be proven or disproven by the
model checker. The SPEC statements in
Figure 5 duplicate the access control rules
as temporal logic statements and are, thus,
provable. In the following sections, we
illustrate how to combine them with input
data values to generate complete tests with
expected results.

In SMV, specifications of the form AG
(predicate 1) -> AX (predi-
cate 2) indicate essentially that for all
paths (the A in AG) for all states globally
(the G), if predicate 1 holds then (->)
for all paths, in the next state (the X in AX)
predicate 2 will hold. SMV checks the
properties in the SPEC statements and
shows that they match the access control
rules as implemented in the finite state
machine, as expected. Once the model is
correct and SPEC claims have been shown
valid for the model, counterexamples can
be produced that will be turned into test
cases.

Generating Covering Array
We will compute covering arrays that give
all t-way combinations, with degree of
interaction coverage two for this example.
If we had a larger number of parameters,
we would produce test configurations that
cover all 3-way, 4-way, etc., combinations.
(With only three parameters, 3-way inter-
action would be equivalent to exhaustive
testing, so we use 2-way combinations for
illustration purposes.) The first step is to
define the parameters (using the graphical

24 CROSSTALK The Journal of Defense Software Engineering June 2008

Covering
array

generator

Covering
array

System
model

Model
checker

Counter-
examples

Post -

processor

 Test
cases

System
under test

Input

values

Figure 5: SMV Model of Access Control Rules

1. MODULE main
2. VAR

--Input parameters
3. u_l: 0..2; -- user level
4. f_l: 0..2; -- file level
5. act: {rd, wr}; -- action

--output parameter
6. access: {START_, GRANT,DENY};

7. ASSIGN
8. init(access) := START_;

--if access is allowed under rules, then next state is GRANT
--else next state is DENY

9. next(access) := case
10. u_l >= f_l & act = rd : GRANT;
11. f_l >= u_l & act = wr : GRANT;
12. 1 : DENY;
13. esac;

14. next(u_l) := u_l;
15. next(f_l) := f_l;
16. next(act) := act;

-- reflection of the assigns for access
-- if user level is at or above file level then read is OK
SPEC AG ((u_l >= f_l & act = rd) -> AX (access = GRANT));

-- if user level is at or below file level, then write is OK
SPEC AG ((f_l >= u_l & act = wr) -> AX (access = GRANT));

-- if neither condition above is true, then DENY any action
SPEC AG (!((u_l >= f_l & act = rd) | (f_l >= u_l & act = wr))
 -> AX (access = DENY));

u_l: 0,1,2
f_l: 0,1,2
act: rd, wr

 u_l f_l act

1 0 0 rd
2 0 1 wr
3 0 2 rd
4 1 0 wr
5 1 1 rd
6 1 2 wr
7 2 0 rd
8 2 1 wr
9 2 2 wr

Test

Figure 4: Automated Combinatorial Test Construction

Automated Combinatorial Test Methods – Beyond Pairwise Testing

user interface if desired) and their values
in a system definition file that will be used
as input to the covering array generator
FireEye with the following format: After
the system definition file is saved, we run
FireEye, in this case specifying 2-way
interactions. FireEye produces the output
shown in Figure 6.

Each test configuration defines a set of
values for the input parameters u_l, f_l,
and act. The complete test set ensures that
all 2-way combinations of parameter values
have been covered

Model Claims With Covering
Array Values Inserted
The next step is to assign values from the
covering array to parameters used in the
model. For each test, we write a claim that
the expected result will not occur. The
model checker determines combinations
that would disprove these claims, out-
putting these as counterexamples. Each
counterexample can then be converted to a
test with known expected result. For exam-
ple, for Test 1 the parameter values are:

u_l = 0 & f_l = 0 & act = rd

For each of the nine configurations in
the covering array (Figure 7), we create a
SPEC claim of the form: SPEC AG(cover-
ing array values) -> AX !(access = result).

This process is repeated for each possi-
ble result, in this case either GRANT or
DENY, so we have nine claims for each of
the two results. The model checker is able to
determine, using the model defined previ-
ously, which result is the correct one for
each set of input values, producing a total of
nine tests.

Excerpt:

SPEC AG((u_l = 0 & f_l = 0 & act
= rd) -> AX !(access = GRANT));

SPEC AG((u_l = 0 & f_l = 1 & act
= wr) -> AX !(access = GRANT));

SPEC AG((u_l = 0 & f_l = 2 & act
= rd) -> AX !(access = GRANT));

etc.

SPEC AG((u_l = 0 & f_l = 0 & act
= rd) -> AX !(access = DENY));

SPEC AG((u_l = 0 & f_l = 1 & act
= wr) -> AX !(access = DENY));

SPEC AG((u_l = 0 & f_l = 2 & act
= rd) -> AX !(access = DENY));

etc.

Generating Counterexamples
With Model Checker
NuSMV produces counterexamples where

the input values would disprove the claims
specified in the previous section. Each of
these counterexamples is, thus, a set of test
data that would have the expected result of
GRANT or DENY. For each SPEC claim, if
this set of values cannot in fact lead to the
particular result, the model checker indicates
that this is true. For example, for the config-
uration below, the claim that access will not
be granted is true, because the user’s clear-
ance level (u_l = 0) is below the file’s level
(f_l = 2):

-- specification AG (((u_l
= 0 & f_l = 2) & act = rd)
-> AX !(access = GRANT)) is
true

If the claim is false, the model checker
indicates this and provides a trace of para-
meter input values and states that will prove
it is false. In effect, this is a complete test
case, i.e., a set of parameter values and an
expected result. It is then simple to map
these values into complete test cases in the
syntax needed for the system under test. An
excerpt from NuSMV output is shown in
Figure 8.

The model checker finds that six of the
input parameter configurations produce a
result of GRANT and three produce a
DENY result, so at the completion of this
step we have successfully matched up each
input parameter configuration with the
result that should be produced by the sys-
tem under test.

At first, the method previously
described may seem backward. Instead of
negating each possible result, why not sim-
ply produce tests from model checker out-
put such as specification AG
(((u_l = 0 & f_l = 2) & act =
rd) -> AX (access = DENY)) is
true? Such a procedure would work fine for
this simple example, but more sophisticated
testing may require more information. Note
that if the claim is true, the model checker

simply reports the fact while if it is false, a
trace of inputs and internal states is pro-
duced to show how the claim fails. Some
testing may require information on internal
states or variable values, and the previous
procedure provides this information.

Shell Script Post-Processing to
Produce Complete Tests
The last step is to use a post-processing tool
that reads the output of the model checker
and generates a set of test inputs with
expected results. The post-processor strips
out the parameter names and values, giving
tests that can be applied to the system under
test. Simple scripts are then used to convert
the test cases into input for a suitable test
harness. The tests produced are shown in
Figure 9 (see next page).

Conclusion
While tests for this trivial example could
easily have been constructed manually,
the procedures introduced in this tutorial
can – and have – been used to produce
tens of thousands of complete test cases
in a few minutes once the SMV model

June 2008 www.stsc.hill.af.mil 25

1. MODULE main
2. VAR

--Input parameters
3. u_l: 0..2; -- user level
4. f_l: 0..2; -- file level
5. act: {rd, wr}; -- action

--output parameter
6. access: {START_, GRANT,DENY};

7. ASSIGN
8. init(access) := START_;

--if access is allowed under rules, then next state is GRANT
--else next state is DENY

9. next(access) := case
10. u_l >= f_l & act = rd : GRANT;
11. f_l >= u_l & act = wr : GRANT;
12. 1 : DENY;
13. esac;

14. next(u_l) := u_l;
15. next(f_l) := f_l;
16. next(act) := act;

-- reflection of the assigns for access
-- if user level is at or above file level then read is OK
SPEC AG ((u_l >= f_l & act = rd) -> AX (access = GRANT));

-- if user level is at or below file level, then write is OK
SPEC AG ((f_l >= u_l & act = wr) -> AX (access = GRANT));

-- if neither condition above is true, then DENY any action
SPEC AG (!((u_l >= f_l & act = rd) | (f_l >= u_l & act = wr))
 -> AX (access = DENY));

u_l: 0,1,2
f_l: 0,1,2
act: rd, wr

 u_l f_l act

1 0 0 rd
2 0 1 wr
3 0 2 rd
4 1 0 wr
5 1 1 rd
6 1 2 wr
7 2 0 rd
8 2 1 wr
9 2 2 wr

Test

Figure 7: FireEye Output Test Values

-- specification AG (((u_l = 0 & f_l = 0) & act = rd)
 -> AX !(access = GRANT)) is false
-- as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
 u_l = 0
 f_l = 0
 act = rd
 access = START_
-> Input: 1.2 <-`
-> State: 1.2 <-
 access = GRANT
…
etc.

 u_l = 0 & f_l = 0 & act = rd -> access = GRANT
 u_l = 0 & f_l = 1 & act = wr -> access = GRANT
 u_l = 1 & f_l = 1 & act = rd -> access = GRANT
 u_l = 1 & f_l = 2 & act = wr -> access = GRANT
 u_l = 2 & f_l = 0 & act = rd -> access = GRANT
 u_l = 2 & f_l = 2 & act = rd -> access = GRANT
u_l = 0 & f_l = 2 & act = rd -> access = DENY
u_l = 1 & f_l = 0 & act = wr -> access = DENY
u_l = 2 & f_l = 1 & act = wr -> access = DENY

Figure 8: Counterexamples (excerpt)

1. MODULE main
2. VAR

--Input parameters
3. u_l: 0..2; -- user level
4. f_l: 0..2; -- file level
5. act: {rd, wr}; -- action

--output parameter
6. access: {START_, GRANT,DENY};

7. ASSIGN
8. init(access) := START_;

--if access is allowed under rules, then next state is GRANT
--else next state is DENY

9. next(access) := case
10. u_l >= f_l & act = rd : GRANT;
11. f_l >= u_l & act = wr : GRANT;
12. 1 : DENY;
13. esac;

14. next(u_l) := u_l;
15. next(f_l) := f_l;
16. next(act) := act;

-- reflection of the assigns for access
-- if user level is at or above file level then read is OK
SPEC AG ((u_l >= f_l & act = rd) -> AX (access = GRANT));

-- if user level is at or below file level, then write is OK
SPEC AG ((f_l >= u_l & act = wr) -> AX (access = GRANT));

-- if neither condition above is true, then DENY any action
SPEC AG (!((u_l >= f_l & act = rd) | (f_l >= u_l & act = wr))
 -> AX (access = DENY));

u_l: 0,1,2
f_l: 0,1,2
act: rd, wr

1
2
3
4
5
6
7
8
9

Test

Figure 6: Model Parameters and Values

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering June 2008

has been defined for the system under
test. The methods in this article still
require human intervention and engi-
neering judgment to define a formal
model of the system under test and for
determining appropriate abstractions and
equivalence classes for input parameters.
But by automating test generation we can
provide much more thorough testing
than is possible with most conventional
methods. In addition, the testing has a
sound empirical basis in the observation
that software failures have been shown to
be caused by the interaction of relatively
few variables. By testing all variable inter-
actions to an appropriate strength, we
can provide stronger assurance for criti-
cal software.u

References
1. Daich, G.T. “New Spreadsheet Tool

Helps Determine Minimal Set of Test
Parameter Combinations.” CrossTalk
Aug. 2003.

2. Phadke, M.S. “Planning Efficient Soft-
ware Tests.” CrossTalk Oct. 1997.

3. Lei, Y., R. Kacker, D.R. Kuhn, V. Okun,
and J. Lawrence. “IPOG/IPOG-D:
Efficient Test Generation for Multi-Way
Combinatorial Testing.” Software
Testing, Verification, and Reliability (to
appear 2008).

4. Kuhn, D.R., D. Wallace, and A. Gallo.
“Software Fault Interactions and
Implications for Software Testing.”
IEEE Transactions on Software
Engineering 30(6):418-421, 2004.

5. Wallace, D.R., and D.R. Kuhn. “Failure
Modes in Medical Device Software: An
Analysis of 15 Years of Recall Data.”
International Journal of Reliability,
Quality and Safety Engineering 8(4):351-
371, 2001.

6. Kuhn, D.R., and V. Okun. “Pseudo-
Exhaustive Testing for Software.” Proc.
of 30th NASA/IEEE Software Engi-
neering Workshop. Apr. 2006.

7. Cimatti, A., E.M. Clarke, E.
Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A.
Tacchella. “NuSMV 2: An OpenSource
Tool for Symbolic Model Checking.”
Proc. of International Conference on
Computer-Aided Verification. Copen-
hagen, Denmark.

8. Ammann, P., and P.E. Black. “Abstract-
ing Formal Specifications to Generate
Software Tests via Model Checking.”
Proc. of 18th Digital Avionics Systems
Conference. St. Louis, MO. Oct. 1999.

Notes
1. Available on <http://csrc.nist.gov/

acts>.
2. The tool can be downloaded at

<http://nusmv.irst.itc.it/>. More infor-
mation on SMV can be found at
<www.cs.cmu.edu/~modelcheck/>.

About the Authors

D. Richard Kuhn is a
computer scientist in the
computer security divi-
sion of the National
Institute of Standards
and Technology (NIST).

His primary technical interests are in
information security, software assurance,
and empirical studies of software failure.
He co-developed the role based access
control model (RBAC) used throughout
industry, and led the effort to establish
RBAC as an American National
Standards Institute standard. Kuhn has
a masters degree in computer science
from the University of Maryland,
College Park, and a bachelors and master
of business administration from William
& Mary.

NIST
MS 8930
Gaithersburg, MD 20899-8930
Phone: (301) 975-3337
Fax: (301) 975-8387
E-mail: kuhn@nist.gov

Yu Lei, Ph.D., is an
assistant professor of
computer science at the
University of Texas,
Arlington. He was a
member of the Fujitsu

Network Communications, Inc., techni-
cal staff from 1998 to 2001. Lei’s
research is in the area of automated soft-
ware analysis, testing, and verification.
His current research is supported by
NIST. Lei has a bachelor’s degree from
Wuhan University, a master’s degree
from Chinese Academy of Sciences, and
a doctorate from North Carolina State
University.

The University of Texas
at Arlington
Department of Computer
Science and Engineering
P.O. Box 19015
Arlington,TX 76019-0015
Phone: (817) 272-2341
Fax: (817) 272-3784
E-mail: ylei@cse.uta.edu

Raghu Kacker, Ph.D.,
is a mathematical statisti-
cian in the mathematical
and computational sci-
ences division of the
NIST. His current inter-

ests include software testing, uncertainty
in physical and virtual measurements,
interlaboratory evaluations, and Bayesian
uncertainty in measurement. Kacker
received his doctorate in statistics from
Iowa State University.

NIST
100 Bureau DR
MS 8910
Gaithersburg, MD 20899-8910
Phone: (301) 975-2109
Fax: (301) 975-3553
E-mail: raghu.kacker@nist.gov

-- specification AG (((u_l = 0 & f_l = 0) & act = rd)
 -> AX !(access = GRANT)) is false
-- as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
 u_l = 0
 f_l = 0
 act = rd
 access = START_
-> Input: 1.2 <-`
-> State: 1.2 <-
 access = GRANT
…
etc.

 u_l = 0 & f_l = 0 & act = rd -> access = GRANT
 u_l = 0 & f_l = 1 & act = wr -> access = GRANT
 u_l = 1 & f_l = 1 & act = rd -> access = GRANT
 u_l = 1 & f_l = 2 & act = wr -> access = GRANT
 u_l = 2 & f_l = 0 & act = rd -> access = GRANT
 u_l = 2 & f_l = 2 & act = rd -> access = GRANT
u_l = 0 & f_l = 2 & act = rd -> access = DENY
u_l = 1 & f_l = 0 & act = wr -> access = DENY
u_l = 2 & f_l = 1 & act = wr -> access = DENY

Figure 9: Test Cases

Open Forum

The term software quality has been one
of the most overused, misused, and

overloaded terms in software engineering.
It is a generic term that suggests quality
software but lacks general consensus on
meaning. Attempts have been made to
define it. The Institute for Electronics and
Electrical Engineers (IEEE) Standard 729
defines it as:

… totality of features of a software
product that bears on its ability to
satisfy given needs and … compos-
ite characteristics of software that
determine the degree to which the
software in use will meet the expec-
tations of the customer. [1]

However, this attempt and others are
few, and not precise. In fact the second
edition of the Encyclopedia of Software
Engineering [2] does not have it listed as
an entry; the encyclopedia skips straight
from “Software Productivity
Consortium” to “software reading.” And
worse, books with software quality in the
title never give a definition to it in their
pages [3, 4].

If you review the past 20 years or so,
you will find an abundance of other
terms that have been employed as pseu-
do-synonyms for software quality.
Examples include process improvement,
software testing, quality management, the
International Organization for
Standardization 9001, software metrics,
software reliability, quality modeling, con-
figuration management, Capability
Maturity Model® Integration, bench-
marking, etc. In doing so, the term soft-
ware quality has wound up representing a
family of processes and ideas more than
it represents good enough software. In
short, software quality has become a cul-
ture and community more than a techni-
cal goal [5].

In this article, I will avoid the quick-
sand associated with trying to come up
with a one-size-fits-all definition. Instead,
I will expose how software quality is
composed of various layers and, by peel-

ing off different layers, it allows us to
have a rational discussion between a typ-
ical software supplier and end user such
that an agreement can be reached as to
whether or not the software is good
enough.

Certification
We will begin dissecting software quality
by first looking at the multiple viewpoints
behind the term certification. This will pro-
vide us with a look into our first layer.

The term is often used to refer to cer-
tifying people skills. For example, the
American Society for Quality (ASQ) has
a host of certifications that individuals
can attain in order to demonstrate com-
petence in certain fields, e.g., they can
become an ASQ Certified Software
Quality Engineer. An individual can also
become certified in specific commercial
software packages, e.g., a Microsoft
Certified Software Engineer.

For the purposes here, I employ a dif-
ferent perspective that comes from three
schools of thought. The first school deals
with certifying that a certain set of devel-
opment, testing, or other processes
applied during the pre-release phases of
the life-cycle were satisfied. In doing so,
you certify that the processes were followed

and completed. (Demonstrating that they
were applied correctly is a trickier issue.)
In the second school, you certify that the
developed software meets the functional
requirements; this can be accomplished via
various types of testing or other analyses.
For the third school, you can certify that
the software itself is fit for purpose. This
third school will be the most useful, and
throughout this article, it will be consid-
ered software to be good enough if it is fit
for purpose.

In this article, the term purpose sug-
gests that two things are present: (1) exe-
cutable software; and (2) an operating
environment. An environment is a complex
entity: It involves the set of inputs that
the software will receive during execu-
tion, along with the probability that the
events will occur [6]. This is referred to as
the operational profile [6]. But it also
involves the hardware that the software
operates on, the operating system, avail-
able memory, disk space, drivers, and
other background processes that are
potentially competing for hardware
resources, etc. These other factors are as
much a part of the environment as are
the traditional inputs; they have been
termed invisible or phantom users.

In some instances phantom users
more heavily determine whether the soft-
ware is fit for purpose than the tradition-
al inputs. In short, it is environment that
gives fit for purpose context. By more
completely defining and thus bounding
the environment to include phantom
users, we gain an advantage in that we can
reduce the set of assumptions needed to
predict whether the software is good
enough. Understanding the distinction
between traditional inputs and phantom
users is one ingredient needed to argue
that fit for purpose has been achieved.

Further, note that rarely will there be
only one environment that software, and
in particular general purpose software, will
encounter during operation. That offers a
key insight as to why general purpose soft-
ware is not certified by independent labo-
ratories; such laboratories could not be

Software Quality Unpeeled

The expression software quality has many interpretations and meanings. In this article, I do not attempt to select any one
in particular, but instead help the reader see the underlying considerations that underscore software quality. Software quality
is a lot more than standards, metrics, models, testing, etc. This article digs into the mystique behind this elusive area.

Dr. Jeffrey Voas
SAIC

June 2008 www.stsc.hill.af.mil 27

“In some instances
phantom users more

heavily determine
whether the software is
fit for purpose than the

traditional inputs. In
short, it is environment

that gives fit for purpose
context.”

Open Forum

omnipotent and could not know all of the
potential target environments [7].

By revisiting the three schools of
thought on certification, we discover
eight ways to visualize software quality
(See Table 1). Let us look at a couple.

In Table 1, scenario 2 represents a sys-
tem that did not meet the requirements
and was not developed according to the
specified development procedures, but
miraculously, the end result was software
that was usable in the field. While this
seems implausible, it is possible. Scenario
7 is the opposite: a system that met the
requirements and was developed accord-
ing to specified development procedures
but resulted in unusable software.
Scenario 7 may seem like heresy to many
in the community of software quality
practitioners. It is not; it simply dispels the
myth that requirements elicitation is far
from a perfect science and that simply fol-
lowing common sense do’s and dont’s (as
spelled out in a development process plan)
guarantees good enough software [8].

Note that only four of these scenarios
yield good enough software: 2, 4, 6, and
8. The other four provide a product that
is not usable for its target environment
and that brings us back to the discussion
of why scoping the target environment as
precisely as possible is an important piece
of what software quality means.

In summary, fit for purpose is the near-
est of the three certification schools of
thought of the IEEE definitions for soft-
ware quality. However, we cannot only
rely on knowing the environment and
expect to be justified in proclaiming we
have achieved software quality. Let us
explore other considerations.

Three High-Level Attributes
of Fit for Purpose
Most readers would probably be com-
fortable with labeling software as being
of good quality if the software could
ensure that (1) it produces accurate and
reliable output, (2) it produces the need-
ed output in a timely manner, and (3) it
produces the output in a secure and pri-
vate manner. These three criteria simply
state that you get the right results at the
right time at the correct level of security.
These are the next three considerations
that cannot be ignored and must incor-
porate into what software quality means.

While each of these is intuitive, none
is precise enough. The family of attribut-
es referred to as the ilities is a good start-
ing point to help increase that precision
[9]. This family includes behavioral char-
acteristics such as reliability, perfor-
mance, safety, security, availability, fault-
tolerance, etc. (These attributes are also
sometimes termed non-functional

requirements.) Other family members
such as dependability, survivability, sus-
tainability, testability, interoperability, and
scalability each require some degree of
one or more of the first six attributes. So,
for example, to have a dependable sys-
tem, some level of reliable and fault-tol-
erant behavior is necessary. To have a sur-
vivable system, some amount of fault tol-
erance and availability is required, and so
on. However, to simplify this discussion
towards our goal of understanding the
term software quality, we will focus only
on the first six: reliability, performance,
safety, security, availability, and fault-tol-
erance.

“Ility” Oxymorons
Table 2 illustrates combinations of these
six ilities. If we were to flesh this table out
as we did in Table 1 we would have 64
rows; however, here we only show 14
combinations for brevity. (For the cells
left empty, we are not considering the
degree to which that attribute contributes
to the quality of the software’s behavior.)

Let us look at a few of these categories
and determine what they represent:
• Category 1. Suggests that the soft-

ware is reliable, has good perfor-
mance, does not trigger unsafe events
to occur (e.g., in a transportation con-
trol system), has appropriate levels of
security built in, has good availability
and thus does not suffer from fre-
quent failures resulting in downtime,
and is resilient to internal failures (i.e.,
fault tolerant). Is all of this possible in
a single software system?

• Category 2. Suggests that the soft-
ware offers reliable behavior, but suf-
fers from the likelihood of producing
outputs that send the system that the
software feeds inputs into an unsafe
mode. This would represent a safety-
critical system where hazardous fail-

28 CROSSTALK The Journal of Defense Software Engineering June 2008

Scenario Meets Requirements Satisfies Development
Processes

Fit for Purpose

1 No No No
2 No No Yes
3 No Yes No
4 No Yes Yes
5 Yes No No
6 Yes No Yes
7 Yes Yes No
8 Yes Yes Yes

Reliability Performance Safety Security Availability Fault-tolerance

Yes Yes Yes Yes Yes Yes
Yes No
No Yes
No Yes
No Yes

 No Yes
 Yes No
 Yes No
 No Yes

Yes No
Yes No Yes
Yes No Yes

 Yes Yes
No No No No No No

Table 1: Views on Certification

Scenario Meets Requirements Satisfies Development
Processes

Fit for Purpose

1 No No No
2 No No Yes
3 No Yes No
4 No Yes Yes
5 Yes No No
6 Yes No Yes
7 Yes Yes No
8 Yes Yes Yes

Category Reliability Performance Safety Security Availability Fault-tolerance

1 Yes Yes Yes Yes Yes Yes
2 Yes No
3 No Yes
4 No Yes
5 No Yes
6 No Yes
7 Yes No
8 Yes No
9 No Yes

10 Yes No
11 Yes No Yes
12 Yes No Yes
13 Yes Yes
14 No No No No No No

Table 2: Ility Combinations

Software Quality Unpeeled

ures are unacceptable; hazardous fail-
ures are categorized differently for
such systems than failures that do not
facilitate possible disastrous loss-of-
life or loss-of-property consequences.
(Note that software by itself is never
unsafe; however software is often
referred to as unsafe if it produces
outputs to a system that put the sys-
tem into an unsafe mode. Safety is a
system property, not a software prop-
erty.) A classic example of a reliable
product that is unsafe is placing a
functioning toaster into a bathtub of
water with the cord still connected;
the toaster is reliable, but it is not safe
to go near.

• Category 3. Suggests that the soft-
ware behaves so unreliably when exe-
cuted that it cannot put the system
into an unsafe mode. An example
here would be that the software gets
hung up in a loop and the safety func-
tionality is never invoked.

• Category 8. Suggests safe but not
secure software behavior. This is quite
realistic for a safety-critical system
with no security concerns. Note that
the interesting aspect of this category
is how safety and security are defined.
Many people use these terms inter-
changeably, which is incorrect.

• Category 11. Suggests that the soft-
ware behaves reliably and has good
availability, but lacks adequate security
precautions. Many systems suffer
from this problem.

• Category 12. Suggests that the soft-
ware behaves reliably, is extremely
slow, but has adequate security. It
makes one wonder if the system is so
slow that it is effectively unusable, and
thus secure, since it would take too
long to break in.

• Category 13. Suggests high levels of
security and high levels of perfor-
mance. In certain situations that is
plausible, however typically security
kills performance and vice versa.

• Category 14. This is the easiest com-
bination to achieve. Anyone can build
a useless system.
The main point here is that the afore-

mentioned high-level attributes (1) pro-
duce accurate and reliable output, (2)
produce the needed output in a timely
manner, and (3) produce the output in a
secure and private manner are actually
composed of the lower-level ilities.
Another important point not to overlook
is the fact that some of the ilities are not
compatible with one another. An exam-
ple of this can easily be found using fault
tolerance and testability. A final impor-

tant point is that some combinations of
the ilities are simply counterintuitive, such
as a system that is safe but unreliable.

One last thing to note: It is vital to get
solid definitions for the ilities and to know
which ones are quantifiable. For example,
reliability and performance are quantifi-
able; security and safety are not. This
makes it far easier to make statements
such as we have very high reliability but an
unknown level of security.

The Shall Nots
There is yet another layer in the notion of
fit for use that deals with negative function-
al requirements. Think of a negative
requirement as “the software shall not do
X,” as opposed to a functional require-
ment stating that “the software shall do X.”

Negative requirements are far more
difficult to elicit than regular require-
ments. Why? Because humans are not
programmed to anticipate and enumerate
all of the bad circumstances that can pop
up and that we need protection against;
we are instead programmed to think
about the good things we want the soft-
ware to do.

For certain types of systems, particu-
larly safety-critical systems, enumerating
negative requirements is a necessity. And
for software requiring security capabili-
ties, security rules and policies are its
equivalent to negative requirements. For
example, a negative security requirement
could be that the software shall never
open access to a particular channel unless
it can be guaranteed that the information

passing through the channel is moving
between trusted entities. The difficulty in
defining shall not’s for security is that we
cannot imagine all of the different forms
of malicious attacks that are being
invented on-the-fly and if we cannot
imagine those attacks, we likely will not
prevent them.

Before leaving the topic of negative
functional requirements, it is worth men-
tioning an interesting relationship
between them and the environment. So
far, we have only mentioned traditional
inputs and phantom users as players in
the environment. Traditional inputs are
those that the software expects to receive
during operation. But there are two other
types of inputs worth mentioning: mali-
cious illegal and non-malicious illegal. A mali-
cious illegal input is one that someone
deliberately feeds into the software to
attack a system, and a non-malicious ille-
gal input is simply an input that the sys-
tem designers do not want the software
to accept but has no malicious intent. In
both cases, filtering on either type of
input can be useful to ensure that certain
inputs do not become a part of the envi-
ronment and in doing so ensure that neg-
ative functional requirements are
enforced.

Time
The next layer in our quest for software
quality is time. Software has fixed longevi-
ty; it can be expanded, as we learned from
Y2K, but not indefinitely.

One of the easiest ways to explain
why time fits here is to look at the situa-
tion where a software package operates
correctly on Monday but does not oper-
ate correctly on Tuesday. Further, the
software package was not modified
between these days. (This is the classic
problem that quickly carves down the
number of freshman computer science
majors.) Why has this problem occurred?

It all goes back to the importance of
environment in the understanding of
software quality. Earlier we defined the
environment as inputs with probabilities
of selection, hardware configurations,
access to memory, operating systems,
attached databases, and whether other
background processes were over-
indulging in resources, etc.

But what is not mentioned was calen-
dar time. Environment is also a function
of time. As time moves forward, other
pieces of the environment change. And
so while all effort and expense can be
levied toward what we perceive is evi-
dence supporting the claim that we have
good enough software, we need to recog-

June 2008 www.stsc.hill.af.mil 29

“For certain types of
systems, particularly

safety-critical systems,
enumerating negative

requirements is a
necessity. And for
software requiring

security capabilities,
security rules and

policies are its equivalent
to negative

requirements.”

Open Forum

nize that even if we do have good
enough software, it may be only for a
short window of time. Thus, software
quality is time-dependent, a bitter pill to
swallow.

Cost
We cannot end this article without men-
tioning cost. The costs associated with
software quality are exasperated by the
un-family like behaviors of various ilities.
Not only are there technical trade-offs
discovered when trying to increase the
degree to which one ilitiy exists only to
find that another is automatically
decreased, but there is the financial trade-
off quagmire concerning how to allocate
financial resources between distinct ilities.
If you overspend on one, there may not
be enough funds for another. And, as if
the technical considerations are not hard
enough when trying to define software
quality, the financial considerations come
aboard, making the problem worse.

Conclusion
In this article, a set of layers for what
software quality means has been
unpeeled. I have argued that a more use-
ful perspective for what software quality
represents starts from the notion of the
software being fit for purpose, which
requires:
1. Understanding the relationship

between the functional requirements and
the environment.

2. Understanding the three high-level
attributes of software quality: the
software: (a) produces accurate and reli-
able output, (b) produces the needed
output in a timely manner, and (c) pro-
duces the output in a secure and private
manner.

3. Understanding that the ilities afford
the potential to have varying degrees
of the high-level attributes.

4. Understanding that the shall-not func-
tional requirements are often of equal
importance to the functional require-
ments.

5. Understanding that there is a temporal
component to software quality; soft-
ware quality is not static or stagnant,

6. Understanding that the ilities offer
technical incompatibilities as well as
financial incompatibilities.

7. Understanding that the environment
contains many more parameters such
as the phantom users than is typically
considered.
Thus, software quality, when viewed

with these different considerations,
becomes a far more interesting topic, and
one that will continue to perplex us for

decades to come.u

References
1. IEEE. Standard Glossary of Software

Engineering Terminology IEEE.
American National Standards Insti-
tute/IEEE Standard 729-1983: 1983.

2. Marciniak, J., ed. Encyclopedia of
Software Engineering. Second
Edition. Wiley Inter-Science: 2002.

3. Wieczorek, Martin, and Dirk
Meyerhoff, editors. Software Quality:
State of the Art in Management,
Testing, and Tools. Springer. New
York: 2001.

4. Gao, J.Z., H.S. Jacob Tsao, and Y. Wu.
Testing and Quality Assurance for
Component-Based Software. Artech
House. Norwood, MA: 2003.

5. Whittacker, J., and J. Voas “50 Years of
Software: Key Principles for Quality.”
IEEE IT Professional. 4(6): 28-35,
Nov. 2002.

6. Musa, John D., Anthony Iannino, and
Kazuhiiro Okumoto. Software
Reliability: Measurement, Prediction,
Application. McGraw-Hill, NY, 1987.

7. Voas, J. “Software Certification Lab-
oratories?” CrossTalk Apr. 1998.

8. Voas, J. “Can Clean Pipes Produce
Dirty Water?” IEEE Software July
1997.

9. Voas, J. “Software’s Secret Sauce: The
’Ilities.” IEEE Software Nov. 2004.

30 CROSSTALK The Journal of Defense Software Engineering June 2008

About the Author

Jeffrey Voas, Ph.D., is
currently director of sys-
tems assurance at Science
Applications Interna-
tional Corporation (SAIC).
He was the president of

the IEEE Reliability Society from 2003-
2005, and currently serves on the Board
of Governors of the IEEE Computer
Society. Voas has published numerous
articles over the past 20 years, and is best
known for his work in software testing,
reliability, and metrics. He has a doctor-
ate in computer science from the College
of William & Mary.

SAIC
200 12th ST South
STE 1500
Arlington,VA 22202
Phone: (703) 414-3842
Fax: (703) 414-8250
E-mail: j.voas@ieee.org

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

MAR2007 c SOFTWARE SECURITY

APR2007 c AGILE DEVELOPMENT

MAY2007 c SOFTWARE ACQUISITION

JUNE2007 c COTS INTEGRATION

JULY2007 c NET-CENTRICITY

AUG2007 c STORIES OF CHANGE

SEPT2007 c SERVICE-ORIENTED ARCH.

OCT2007 c SYSTEMS ENGINEERING

NOV2007 c WORKING AS A TEAM

DEC2007 c SOFTWARE SUSTAINMENT

JAN2008 c TRAINING AND EDUCATION

FEB2008 c SMALL PROJECTS, BIG ISSUES

MAR2008 c THE BEGINNING

APR2008 c PROJECT TRACKING

MAY2008 c LEAN PRINCIPLES

To request back issues on topics not
listed above, please contact <stsc.
customerservice@hill.af.mil>.

Welcome to the June issue of CrossTalk – and I hope
you didn’t miss the Systems and Software Technology

Conference (SSTC) conference in Las Vegas about a month
ago. It was great! First of all, the location was superb – con-
ference facilities, hotel, location. Come on – Barry Manilow
and the Star Trek Experience? Geek heaven. The weather was
fantastic (although a bit warm during the day), and having the
monorail to travel to/from the Strip was convenient.

The exhibits were also good (as usual). There seemed to
be quite a few of the process-oriented vendors this year – a good
thing, if you ask me. And, let’s face it, the giveaways and gad-
gets were spectacular. The food was also great. Personally, I
think that the speakers were better than ever this year. It was
good seeing a lot of old friends, and making new ones. The
only drawback was that with all of the distractions, far too
many of us stayed up late, and made the 2008 SSTC confer-
ence a conference to remember. What more could you ask
for?

Except that I am writing this column in March, and the
SSTC conference is still a month in the future. However, I
am totally convinced that almost everything I wrote above
will be true, and that after the conference ends, I will be able
to argue that I was very successful in predicting the future. If
only software were so easy.

The theme of this issue is Software Quality. I have a very
unique definition of quality. In my mind, quality was defined
by Simon and Garfunkel back in 1970 on their “Bridge Over
Troubled Water” album (arguably the best piece of music ever
released). There was a song entitled “Keep the Customer
Satisfied.” Awesome lyrics. And that is the key – keeping the
customer satisfied.

So, how do I achieve this dubious thing called quality
which is hard to measure directly? Well, I am sure that this
issue contains great articles about quality (since I’m writing
in the future, I don’t even know the article lineup yet!).

In my mind, quality needs to include customer satisfac-
tion. Is the software going to be used in a passenger aircraft?
Well then, as a potential customer, I am pretty darn hard to
satisfy. The other day, I was flying “across the little pond”
(returning from London across the Atlantic) and the in-seat
entertainment system I was using crashed – I actually got a
core dump error message and saw Linux rebooting. The lady
sitting next to me had it happen to her, and her comment
was, “I sure hope that the software that runs the aircraft
works better.” Well, having worked with several aircraft soft-
ware developers, I can assure you that it does run much bet-
ter. Is the software going to be used to simply rip a few of
my old CDs to MP3s so that I can load them onto my latest
gadget? Then I am willing to have it occasionally fail. I have
a feeling that the latest SuperX MP3 Ripper program I down-
loaded free off the Web cost a lot less per line of code to
develop than the software that will power the Joint Strike
Fighter.

Which brings me back to forecasting the future.
Forecasting the future is not an exact science. A friend of
mine who is a meteorologist says that an 85 percent to 90
percent success rate in intermediate range predictions (one to

three days out) is great. Two weeks out? More general pre-
dictions (i.e., warming trend) give the forecaster some leeway.
One day out? A high of 73 with afternoon showers, ending
by 9 p.m. tonight.

The secret to quality is the same: if you really think you
can set a schedule (such as 28 lines of code per programmer
per day) that will allow your developers to achieve a quality
target (“No more than two errors found per 500 function
points during integration testing”) that is also reasonably
accurate one year out, well ... how did you enjoy SSTC 2009?
Even with lots of historic data for similar projects, each
development effort is different. Weather forecasters have
access to about a hundred years of hurricane data, but still
cannot tell me one month out when and where (or even if) a
hurricane is going to hit the United States.

Quality is fragile. It is hard to achieve and, once lost, it
seems to be gone forever. You can’t test quality back in –
those who have tried know better. You have to plan aggres-
sively for quality and you have to have a good process for it
(I wasn’t kidding earlier – the more process-oriented vendors
at SSTC, the better it is for Department of Defense software
in general).

Forecast the future as best you can. Revise your forecasts
(and timelines) as you get closer to your goals. A good
weather person has no problem saying, “Well, last week we
said generally clear, but prepare for a heavy rain tomorrow.”
A good program manager might just have to say, “We had
hoped to be in integration testing this week, but we need
another month to complete inspections and peer reviews.”
Nobody wants to hear that their vacation and beach plans are
going to be washed away, but it happens. Nobody wants to
hear that we are having problems with code quality, but if
you have a good forecast and update it as needed, maybe you
won’t.

Hope you enjoyed SSTC 2008 – and see you at SSTC
2009. Trust me – it was great, also!

—David A. Cook
The AEgis Technologies Group, Inc.

dcook@aegistg.com

BACKTALK

June 2008 www.stsc.hill.af.mil 31

Forecasting the Future

Can You BackTalk?

Here is your chance to make your point, even if it is a bit
tongue-in-cheek, without your boss censoring your writing. In
addition to accepting articles that relate to software engineer-
ing for publication in CrossTalk, we also accept articles for
the BackTalk column. BackTalk articles should provide a
concise, clever, humorous, and insightful perspective on the
software engineering profession or industry or a portion of it.
Your BackTalk article should be entertaining and clever or
original in concept, design, or delivery. The length should not
exceed 750 words.

For a complete author’s packet detailing how to submit
your BackTalk article, visit our Web site at
<www.stsc.hill.af.mil>.

CrossTalk / 517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

CrossTalk is
co-sponsored by the

following organizations:

	Front Cover
	Table of Contents
	From the Publisher
	Software Quality
	The Software Quality Challenge
	Measuring Defect Potentials andDefect Removal Efficiency©
	Quality Processes Yield Quality Products

	Software Engineering Technology
	The Use and Limitations of Static-AnalysisTools to Improve Software Quality
	Automated Combinatorial Test Methods –Beyond Pairwise Testing

	Open Forum
	Software Quality Unpeeled

	Coming Events
	Web Sites
	Call For Articles
	Reader Results Request
	BackTalk
	Back Cover

